We consider the problem of providing dense segmentation masks for object discovery in videos. We formulate the object discovery problem as foreground motion clustering, where the goal is to cluster foreground pixels in videos into different objects. We introduce a novel pixel-trajectory recurrent neural network that learns feature embeddings of foreground pixel trajectories linked across time. By clustering the pixel trajectories using the learned feature embeddings, our method establishes correspondences between foreground object masks across video frames. To demonstrate the effectiveness of our framework for object discovery, we conduct experiments on commonly used datasets for motion segmentation, where we achieve state-of-the-art performance. arXiv:1812.02772v2 [cs.CV] 5 Apr 2019
Encoder-Decoder: Y-NetLet I t ∈ R H×W ×3 , F t ∈ R H×W ×2 be an RGB image and forward optical flow image at time t, respectively. Our
In order to function in unstructured environments, robots need the ability to recognize unseen objects. We take a step in this direction by tackling the problem of segmenting unseen object instances in tabletop environments. However, the type of large-scale real-world dataset required for this task typically does not exist for most robotic settings, which motivates the use of synthetic data. Our proposed method, UOIS-Net, separately leverages synthetic RGB and synthetic depth for unseen object instance segmentation. UOIS-Net is comprised of two stages: first, it operates only on depth to produce object instance center votes in 2D or 3D and assembles them into rough initial masks. Secondly, these initial masks are refined using RGB. Surprisingly, our framework is able to learn from synthetic RGB-D data where the RGB is non-photorealistic. To train our method, we introduce a large-scale synthetic dataset of random objects on tabletops. We show that our method can produce sharp and accurate segmentation masks, outperforming state-of-the-art methods on unseen object instance segmentation. We also show that our method can segment unseen objects for robot grasping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.