Motivated by the recent interest in formal methods-based control for dynamic robots, we discuss the applicability of prescribed performance control to nonlinear systems subject to signal temporal logic specifications. Prescribed performance control imposes a desired transient behavior on the system trajectories that is leveraged to satisfy atomic signal temporal logic specifications. A hybrid control strategy is then used to satisfy a finite set of these atomic specifications. Simulations of a multi-agent system, using consensus dynamics, show that a wide range of specifications, i.e., formation, sequencing, and dispersion, can be robustly satisfied.y := H(y, t) with y(0) := y 0 ∈ Ω y ,
This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steadystate performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings.
In this paper, we study the longitudinal control problem for a platoon of vehicles with unknown nonlinear dynamics under both the predecessor-following and the bidirectional control architectures. The proposed control protocols are fully distributed in the sense that each vehicle utilizes feedback from its relative position with respect to its preceding and following vehicles as well as its own velocity, which can all be easily obtained by onboard sensors. Moreover, no previous knowledge of model nonlinearities/disturbances is incorporated in the control design, enhancing in that way the robustness of the overall closed loop system against model imperfections. Additionally, certain designer-specified performance functions determine the transient and steady-state response, thus preventing connectivity breaks due to sensor limitations as well as intervehicular collisions. Finally, extensive simulation studies and a real-time experiment conducted with mobile robots clarify the proposed control protocols and verify their effectiveness.
This paper addresses the problem of cooperative transportation of an object rigidly grasped by N robotic agents.In particular, we propose a Nonlinear Model Predictive Control(NMPC) scheme that guarantees the navigation of the object to a desired pose in a bounded workspace with obstacles, while complying with certain input saturations of the agents. Moreover, the proposed methodology ensures that the agents do not collide with each other or with the workspace obstacles as well as that they do not pass through singular configurations.The feasibility and convergence analysis of the NMPC are explicitly provided. Finally, simulation results illustrate the validity and efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.