Pleistocene alkaline basaltic lavas crop out in the region of Volos at the localities of Microthives and Porphyrio. Results from detailed petrographic study show porphyritic textures with varying porosity between 15% and 23%. Data from deep and shallow water samples were analysed and belong to the Ca-Mg-Na-HCO3-Cl and the Ca-Mg-HCO3 hydrochemical types. Irrigation wells have provided groundwater temperatures reaching up to ~30 °C. Water samples obtained from depths ranging between 170 and 250 m. The enhanced temperature of the groundwater is provided by a recent-inactive magmatic heating source. Comparable temperatures are also recorded in adjacent regions in which basalts of similar composition and age crop out. Estimations based on our findings indicate that basaltic rocks from the region of Volos have the appropriate physicochemical properties for the implementation of a financially feasible CO2 capture and storage scenario. Their silica-undersaturated alkaline composition, the abundance of Ca-bearing minerals, low alteration grade, and high porosity provide significant advantages for CO2 mineral carbonation. Preliminary calculations suggest that potential pilot projects at the Microthives and Porphyrio basaltic formations can store 64,800 and 21,600 tons of CO2, respectively.
Underground geological energy and CO2 storage contribute to mitigation of anthropogenic greenhouse-gas emissions and climate change effects. The present study aims to present specific underground energy and CO2 storage sites in Greece. Thermal capacity calculations from twenty-two studied aquifers (4 × 10−4–25 × 10−3 MJ) indicate that those of Mesohellenic Trough (Northwest Greece), Western Thessaloniki basin and Botsara flysch (Northwestern Greece) exhibit the best performance. Heat capacity was investigated in fourteen aquifers (throughout North and South Greece) and three abandoned mines of Central Greece. Results indicate that aquifers present higher average total heat energy values (up to ~6.05 × 106 MWh(th)), whereas abandoned mines present significantly higher average area heat energy contents (up to ~5.44 × 106 MWh(th)). Estimations indicate that the Sappes, Serres and Komotini aquifers could cover the space heating energy consumption of East Macedonia-Thrace region. Underground gas storage was investigated in eight aquifers, four gas fields and three evaporite sites. Results indicate that Prinos and South Kavala gas fields (North Greece) could cover the electricity needs of households in East Macedonia and Thrace regions. Hydrogen storage capacity of Corfu and Kefalonia islands is 53,200 MWh(e). These values could cover the electricity needs of 6770 households in the Ionian islands. Petrographical and mineralogical studies of sandstone samples from the Mesohellenic Trough and Volos basalts (Central Greece) indicate that they could serve as potential sites for CO2 storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.