BackgroundNo universal solution, based on an approved pedagogical approach, exists to parametrically describe, effectively manage, and clearly visualize a higher education institution’s curriculum, including tools for unveiling relationships inside curricular datasets.ObjectiveWe aim to solve the issue of medical curriculum mapping to improve understanding of the complex structure and content of medical education programs. Our effort is based on the long-term development and implementation of an original web-based platform, which supports an outcomes-based approach to medical and healthcare education and is suitable for repeated updates and adoption to curriculum innovations.MethodsWe adopted data exploration and visualization approaches in the context of medical curriculum innovations in higher education institutions domain. We have developed a robust platform, covering detailed formal metadata specifications down to the level of learning units, interconnections, and learning outcomes, in accordance with Bloom’s taxonomy and direct links to a particular biomedical nomenclature. Furthermore, we used selected modeling techniques and data mining methods to generate academic analytics reports from medical curriculum mapping datasets.ResultsWe present a solution that allows users to effectively optimize a curriculum structure that is described with appropriate metadata, such as course attributes, learning units and outcomes, a standardized vocabulary nomenclature, and a tree structure of essential terms. We present a case study implementation that includes effective support for curriculum reengineering efforts of academics through a comprehensive overview of the General Medicine study program. Moreover, we introduce deep content analysis of a dataset that was captured with the use of the curriculum mapping platform; this may assist in detecting any potentially problematic areas, and hence it may help to construct a comprehensive overview for the subsequent global in-depth medical curriculum inspection.ConclusionsWe have proposed, developed, and implemented an original framework for medical and healthcare curriculum innovations and harmonization, including: planning model, mapping model, and selected academic analytics extracted with the use of data mining.
In this chapter, we introduce the readers to the field of big educational data and how big educational data can be analysed to provide insights into different stakeholders and thereby foster data driven actions concerning quality improvement in education. For the analysis and exploitation of big educational data, we present different techniques and popular applied scientific methods for data analysis and manipulation such as analytics and different analytical approaches such as learning, academic and visual analytics, providing examples of how these techniques and methods could be used. The concept of quality improvement in education is presented in relation to two factors: (a) to improvement science and its impact on different processes in education such as the learning, educational and academic processes and (b) as a result of the practical application and realization of the presented analytical concepts. The context of health professions education is used to exemplify the different concepts.
Introduction. The big data present in the medical curriculum that informs undergraduate medical education is beyond human abilities to perceive and analyze. The medical curriculum is the main tool used by teachers and directors to plan, design, and deliver teaching and assessment activities and student evaluations in medical education in a continuous effort to improve it. Big data remains largely unexploited for medical education improvement purposes. The emerging research field of visual analytics has the advantage of combining data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognize visual patterns. Nevertheless, there is a lack of research on the use and benefits of visual analytics in medical education.Methods. The present study is based on analyzing the data in the medical curriculum of an undergraduate medical program as it concerns teaching activities, assessment methods and learning outcomes in order to explore visual analytics as a tool for finding ways of representing big data from undergraduate medical education for improvement purposes. Cytoscape software was employed to build networks of the identified aspects and visualize them.Results. After the analysis of the curriculum data, eleven aspects were identified. Further analysis and visualization of the identified aspects with Cytoscape resulted in building an abstract model of the examined data that presented three different approaches; (i) learning outcomes and teaching methods, (ii) examination and learning outcomes, and (iii) teaching methods, learning outcomes, examination results, and gap analysis.Discussion. This study identified aspects of medical curriculum that play an important role in how medical education is conducted. The implementation of visual analytics revealed three novel ways of representing big data in the undergraduate medical education context. It appears to be a useful tool to explore such data with possible future implications on healthcare education. It also opens a new direction in medical education informatics research.
BackgroundTraditional learning in medical education has been transformed with the advent of information technology. We have recently seen global initiatives to produce online activities in an effort to scale up learning opportunities through learning management systems and massive open online courses for both undergraduate and continued professional education. Despite the positive impact of such efforts, factors such as cost, time, resources, and the specificity of educational contexts restrict the design and exchange of online medical educational activities.ObjectiveThe goal is to address the stated issues within the health professions education context while promoting learning by proposing the Online Learning Activities for Medical Education (OLAmeD) concept which builds on unified competency frameworks and generic technical standards for education.MethodsWe outline how frameworks used to describe a set of competencies for a specific topic in medical education across medical schools in the United States and Europe can be compared to identify commonalities that could result in a unified set of competencies representing both contexts adequately. Further, we examine how technical standards could be used to allow standardization, seamless sharing, and reusability of educational content.ResultsThe entire process of developing and sharing OLAmeD is structured and presented in a set of steps using as example Urology as a part of clinical surgery specialization.ConclusionsBeyond supporting the development, sharing, and repurposing of educational content, we expect OLAmeD to work as a tool that promotes learning and sets a base for a community of medical educational content developers across different educational contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.