In this chapter, we introduce the readers to the field of big educational data and how big educational data can be analysed to provide insights into different stakeholders and thereby foster data driven actions concerning quality improvement in education. For the analysis and exploitation of big educational data, we present different techniques and popular applied scientific methods for data analysis and manipulation such as analytics and different analytical approaches such as learning, academic and visual analytics, providing examples of how these techniques and methods could be used. The concept of quality improvement in education is presented in relation to two factors: (a) to improvement science and its impact on different processes in education such as the learning, educational and academic processes and (b) as a result of the practical application and realization of the presented analytical concepts. The context of health professions education is used to exemplify the different concepts.
Background Medical schools in low- and middle-income countries are facing a shortage of staff, limited infrastructure, and restricted access to fast and reliable internet. Offline digital education may be an alternative solution for these issues, allowing medical students to learn at their own time and pace, without the need for a network connection. Objective The primary objective of this systematic review was to assess the effectiveness of offline digital education compared with traditional learning or a different form of offline digital education such as CD-ROM or PowerPoint presentations in improving knowledge, skills, attitudes, and satisfaction of medical students. The secondary objective was to assess the cost-effectiveness of offline digital education, changes in its accessibility or availability, and its unintended/adverse effects on students. Methods We carried out a systematic review of the literature by following the Cochrane methodology. We searched seven major electronic databases from January 1990 to August 2017 for randomized controlled trials (RCTs) or cluster RCTs. Two authors independently screened studies, extracted data, and assessed the risk of bias. We assessed the quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluations criteria. Results We included 36 studies with 3325 medical students, of which 33 were RCTs and three were cluster RCTs. The interventions consisted of software programs, CD-ROMs, PowerPoint presentations, computer-based videos, and other computer-based interventions. The pooled estimate of 19 studies (1717 participants) showed no significant difference between offline digital education and traditional learning groups in terms of students’ postintervention knowledge scores (standardized mean difference=0.11, 95% CI –0.11 to 0.32; small effect size; low-quality evidence). Meta-analysis of four studies found that, compared with traditional learning, offline digital education improved medical students’ postintervention skills (standardized mean difference=1.05, 95% CI 0.15-1.95; large effect size; low-quality evidence). We are uncertain about the effects of offline digital education on students’ attitudes and satisfaction due to missing or incomplete outcome data. Only four studies estimated the costs of offline digital education, and none reported changes in accessibility or availability of such education or in the adverse effects. The risk of bias was predominantly high in more than half of the included studies. The overall quality of the evidence was low (for knowledge, skills, attitudes, and satisfaction) due to the study limitations and inconsistency across the studies. Conclusions Our findings suggest that offline digital education is as effective as traditional learning in terms of medical students’ knowledge and may be more effective than traditional learning in terms of medical students’ skills. H...
This is the protocol for a review and there is no abstract. The objectives are as follows: The primary objective of this review is to assess the effects of offline, computer-based eLearning compared with 'traditional' learning and other types of eLearning interventions for medical students' knowledge as well as changes in skills and attitude towards the intervention. Additionally, as secondary objectives, this review will assess the economic impact (cost-benefit, cost-utility or cost-effectiveness), unintended adverse effects, and medical students' satisfaction with using offline and computer-based educational interventions
The primary objective of this review is to assess the effects of offline, computer-based eLearning compared with 'traditional' learning and other types of eLearning interventions for medical students' knowledge as well as changes in skills and attitude towards the intervention. Additionally, as secondary objectives, this review will assess the economic impact (cost-benefit, cost-utility or cost-effectiveness), unintended adverse effects, and medical students' satisfaction with using offline and computer-based educational interventions.
BACKGROUND Medical schools in low- and middle-income countries are facing a shortage of staff, limited infrastructure, and restricted access to fast and reliable internet. Offline digital education may be an alternative solution for these issues, allowing medical students to learn at their own time and pace, without the need for a network connection. OBJECTIVE The primary objective of this systematic review was to assess the effectiveness of offline digital education compared with traditional learning or a different form of offline digital education such as CD-ROM or PowerPoint presentations in improving knowledge, skills, attitudes, and satisfaction of medical students. The secondary objective was to assess the cost-effectiveness of offline digital education, changes in its accessibility or availability, and its unintended/adverse effects on students. METHODS We carried out a systematic review of the literature by following the Cochrane methodology. We searched seven major electronic databases from January 1990 to August 2017 for randomized controlled trials (RCTs) or cluster RCTs. Two authors independently screened studies, extracted data, and assessed the risk of bias. We assessed the quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluations criteria. RESULTS We included 36 studies with 3325 medical students, of which 33 were RCTs and three were cluster RCTs. The interventions consisted of software programs, CD-ROMs, PowerPoint presentations, computer-based videos, and other computer-based interventions. The pooled estimate of 19 studies (1717 participants) showed no significant difference between offline digital education and traditional learning groups in terms of students’ postintervention knowledge scores (standardized mean difference=0.11, 95% CI –0.11 to 0.32; small effect size; low-quality evidence). Meta-analysis of four studies found that, compared with traditional learning, offline digital education improved medical students’ postintervention skills (standardized mean difference=1.05, 95% CI 0.15-1.95; large effect size; low-quality evidence). We are uncertain about the effects of offline digital education on students’ attitudes and satisfaction due to missing or incomplete outcome data. Only four studies estimated the costs of offline digital education, and none reported changes in accessibility or availability of such education or in the adverse effects. The risk of bias was predominantly high in more than half of the included studies. The overall quality of the evidence was low (for knowledge, skills, attitudes, and satisfaction) due to the study limitations and inconsistency across the studies. CONCLUSIONS Our findings suggest that offline digital education is as effective as traditional learning in terms of medical students’ knowledge and may be more effective than traditional learning in terms of medical students’ skills. However, there is a need to further investigate students’ attitudes and satisfaction with offline digital education as well as its cost-effectiveness, changes in its accessibility or availability, and any resulting unintended/adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.