We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.
We consider a formal discretisation of Euclidean quantum gravity defined by a statistical model of random 3-regular graphs and making using of the Ollivier curvature, a coarse analogue of the Ricci curvature. Numerical analysis shows that the Hausdorff and spectral dimensions of the model approach 1 in the joint classical-thermodynamic limit and we argue that the scaling limit of the model is the circle of radius r, S r 1 . Given mild kinematic constraints, these claims can be proven with full mathematical rigour: speaking precisely, it may be shown that for 3-regular graphs of girth at least 4, any sequence of action minimising configurations converges in the sense of Gromov–Hausdorff to S r 1 . We also present strong evidence for the existence of a second-order phase transition through an analysis of finite size effects. This—essentially solvable—toy model of emergent one-dimensional geometry is meant as a controllable paradigm for the nonperturbative definition of random flat surfaces.
We review and extend the recently proposed model of combinatorial quantum gravity. Contrary to previous discrete approaches, this model is defined on (regular) random graphs and is driven by a purely combinatorial version of Ricci curvature, the Ollivier curvature, defined on generic metric spaces equipped with a Markov chain. It dispenses thus of notions such as simplicial complexes and Regge calculus and is ideally suited to extend quantum gravity to combinatorial structures which have a priori nothing to do with geometry. Indeed, our results show that geometry and general relativity emerge from random structures in a second-order phase transition due to the condensation of cycles on random graphs, a critical point that defines quantum gravity nonperturbatively according to asymptotic safety. In combinatorial quantum gravity the entropy area law emerges naturally as a consequence of infinite-dimensional critical behaviour on networks rather than on lattices. We propose thus that the entropy area law is a signature of the random graph nature of space-(time) on the smallest scales.
The Ollivier curvature has important applications in discrete geometry and network theory, in particular as a measure of local clustering. The Ollivier curvature is defined in terms of the Wasserstein distance which, in the discrete setting, can be regarded as an optimal solution of a particular linear programme. In certain classes of graph, this linear programme may be solved a priori giving rise to exact combinatorial expressions for the Ollivier curvature. It has been claimed by Bhattacharya and Mukherjee ( 2013) that an exact expression exists for the Ollivier curvature in bipartite graphs and graphs of girth 5; we present counterexamples to these claims and identify the error in the argument of Bhattacharya and Mukherjee. We then repeat the analysis of Bhattacharya and Mukherjee for arbitrary graphs, taking this error into account, and present reducedparallelly solvable-linear programmes for the calculation of the Ollivier curvature. This allows for potential improvements in the exact numerical evaluation of the Ollivier curvature, though the result heuristically suggests no general exact combinatorial expression for the Ollivier curvature exists. Finally we give an exact expression for the Ollivier curvature in a class of graphs defined by a particular combinatorial constraint motivated by physical considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.