Note: Rhetoric has an extensive technical vocabulary. In this introduction, we explain these terms as we go along. The authors of the papers in this special issue do the same. But it can be easy to get lost in a forest of so many novel terms. So we provide a glossary at the end of this introduction.
Abstract. There is a driving need computationally to interrogate large bodies of text for a range of non-denotative meaning (e.g., to plot chains of reasoning, detect sentiment, diagnose genre, and so forth). But such meaning has always proven computationally allusive. It is often implicit, 'hidden' meaning, evoked by linguistic cues, stylistic arrangement, or conceptual structurefeatures that have hitherto been difficult for Natural Language Processing systems to recognize and use. Non-denotative textual effects are the historical concern of rhetorical studies, and we have turned to rhetoric in order to find new ways to advance NLP, especially for sophisticated tasks like Argument Mining. This paper highlights certain rhetorical devices that encode levels of meaning that have been overlooked in Computational Linguistics generally and Argument Mining particularly, and yet lend themselves to automated detection. These devices are the linguistic configurations known as Rhetorical Figures. We argue for the importance of these devices for Argument Mining, especially in collocations, and we present an XML annotation scheme for Rhetorical Figures to make figuration more tractable for computational approaches, particularly with an eye on the improvements they offer Argument Mining. We also discuss the intellectual and technical challenges involved in figure annotation and the implications for Machine Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.