Bauxite residue (BR) is a well promising resource for critical metals, especially scandium (Sc), a rare and expensive metal with increasing applications in advanced technology. Greek BR seems to significantly favor a commercially viable recovery of Sc combining optimized leaching and advanced separation techniques. Leaching with mineral acids emerges as the dominant selection compared to other techniques. This study investigates an optimized leaching condition set for Sc recovery, using the most advantageous option of sulfuric acid. The main target is to develop a leaching scale-up process to be established in the premises of Mytilineos S.A. (formerly Aluminium of Greece, the largest Greek alumina and aluminum producer), taking into account the feed requirements of a subsequent advanced ion exchanged procedure. Several parameters were studied individually or combined in order to achieve high Sc concentration in the leachate and to ensure selectivity, especially concerning iron. The most significant parameters prove to be the solid-to-liquid ratio (S/L), the final pH value, and the leachate’s recycling. The proposed process, with low molarities of sulfuric acid and ambient conditions, integrates rapidly, leading to high and selective Sc recovery. Finally, a leaching process flow diagram under continuous operation on an industrial scale is developed.
The major causes of failure of drug discovery compounds in clinics are the lack of efficacy and toxicity. To reduce late-stage failures in the drug discovery process, it is essential to estimate early the probability of adverse effects and potential toxicity. Cardiotoxicity is one of the most often observed problems related to a compound's inhibition of the hERG channel responsible for the potassium cation flux. Biomimetic HPLC methods can be used for the early screening of a compound's lipophilicity, protein binding and phospholipid partition. Based on the published hERG pIC50 data of 90 marketed drugs and their measured biomimetic properties, a model has been developed to predict the hERG inhibition using the measured binding of compounds to alpha-1-acid-glycoprotein (AGP) and immobilised artificial membrane (IAM). A representative test set of 16 compounds was carefully selected. The training set, involving the remaining compounds, served to establish the linear model. The mechanistic model supports the hypothesis that compounds have to traverse the cell membrane and bind to the hERG ion channel to cause the inhibition. The AGP and the hERG ion channel show structural similarity, as both bind positively charged compounds with strong shape selectivity. In contrast, a good IAM partition is a prerequisite for cell membrane traversal. For reasons of comparison, a corresponding model was derived by replacing the measured biomimetic properties with calculated physicochemical properties. The model established with the measured biomimetic binding properties proved to be superior and can explain over 70% of the variance of the hERG pIC50 values. ©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.