Aiming at the industrial scale development of a Scandium (Sc)-selective leaching process of Bauxite Residue (BR), a set of process design aspects has been investigated. The interpretation of experimental data for Sc leaching yield, with sulfuric acid as the leaching solvent, has shown significant impact from acid feed concentration, mixing time, liquid to solids ratio (L/S), and number of cycles of leachate re-usage onto fresh BR. The thin film diffusion model, as the fundamental theory for leaching, either with constant particle size for selective leaching, or with shrinking particle size for less-or non-selective leaching, interprets the relevant experimental data. In both cases, a concept for an unyielding core supplements the basic model. Especially for the selective leaching mild conditions, the simplest model version agrees with the experiments, since both prove 1st order kinetics, while for extreme conditions, a combined conversion rate model with diffusion and chemical reaction inside particles is proposed. The maximization of Sc recovery per unit of consumed solvent emerged as highly critical for the process economics.
Bauxite residue (BR) is a well promising resource for critical metals, especially scandium (Sc), a rare and expensive metal with increasing applications in advanced technology. Greek BR seems to significantly favor a commercially viable recovery of Sc combining optimized leaching and advanced separation techniques. Leaching with mineral acids emerges as the dominant selection compared to other techniques. This study investigates an optimized leaching condition set for Sc recovery, using the most advantageous option of sulfuric acid. The main target is to develop a leaching scale-up process to be established in the premises of Mytilineos S.A. (formerly Aluminium of Greece, the largest Greek alumina and aluminum producer), taking into account the feed requirements of a subsequent advanced ion exchanged procedure. Several parameters were studied individually or combined in order to achieve high Sc concentration in the leachate and to ensure selectivity, especially concerning iron. The most significant parameters prove to be the solid-to-liquid ratio (S/L), the final pH value, and the leachate’s recycling. The proposed process, with low molarities of sulfuric acid and ambient conditions, integrates rapidly, leading to high and selective Sc recovery. Finally, a leaching process flow diagram under continuous operation on an industrial scale is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.