Certain major histocompatibility complex (MHC) class I alleles are associated with the control of human immunodeficiency virus and simian immunodeficiency virus (SIV) replication. We have designed sequence-specific primers for detection of the rhesus macaque MHC class I allele Mamu-B*08 by PCR and screened a cohort of SIV-infected macaques for this allele. Analysis of 196 SIV mac 239-infected Indian rhesus macaques revealed that Mamu-B*08 was significantly overrepresented in elite controllers; 38% of elite controllers were Mamu-B*08 positive compared to 3% of progressors (P ؍ 0.00001). Mamu-B*08 was also associated with a 7.34-fold decrease in chronic phase viremia (P ؍ 0.002). Mamu-B*08-positive macaques may, therefore, provide a good model to understand the correlates of MHC class I allele-associated immune protection and viral containment in human elite controllers.
The utility of the rhesus macaque as an animal model in both HIV vaccine development and pathogenesis studies necessitates the development of accurate and efficient major histocompatibility complex (MHC) genotyping technologies. In this paper, we describe the development and application of allele-specific polymerase chain reaction (PCR) amplification for the simultaneous detection of eight MHC class I alleles from the rhesus macaque (Macaca mulatta) of Indian descent. These alleles were selected, as they have been implicated in the restriction of CD8(+) T cell epitopes of simian immunodeficiency virus (SIV). Molecular typing of Mamu-A 01, Mamu-A 02, Mamu-A 08, Mamu-A 11, Mamu-B 01, Mamu-B 03, Mamu-B 04, and Mamu-B 17 was conducted in a high throughput fashion using genomic DNA. Our amplification strategy included a conserved internal control target to minimize false negative results and can be completed in less than 5 h. We have genotyped over 4,000 animals to establish allele frequencies from colonies all over the western hemisphere. The ability to identify MHC-defined rhesus macaques will greatly enhance investigation of the immune responses, which are responsible for the control of viral replication. Furthermore, application of this technically simple and accurate typing method should facilitate selection, utilization, and breeding of rhesus macaques for AIDS virus pathogenesis and vaccine studies.
It has recently been shown that polymorphism at the rhesus macaque TRIM5 locus can affect simian immunodeficiency virus (SIV) replication. Here we show that TRIM5 alleles can also affect acquisition of SIVsmE660. Animals coexpressing the TRIM5 TFP and TRIM5 CypA alleles took significantly longer to become infected with SIVsmE660, but not SIVmac239, after repeated limiting-dose intrarectal challenge than did animals expressing other TRIM5 allele combinations. Our results indicate that the TRIM5 alleles can be a barrier to productive infection and that this should be taken into account when designing acquisition studies using SIVsmE660 or related viruses.Lentiviruses and their hosts have been interacting and adapting to each other for millions of years. Humans and nonhuman primates, like other mammals, express cellular restriction factors to inhibit viral replication (6). These restriction factors offer protection against a broad range of viruses and represent an important barrier to zoonotic transmissions. Recently, three major classes of retroviral restriction factors have been identified: APOBEC3, tripartite motif protein 5 alpha (TRIM5␣), and tetherin (12,16,19,20). Each of these factors targets a different step in the virus life cycle to suppress viral replication. To counteract these restriction factors, primate lentiviruses have developed a series of accessory proteins that, in part, circumvent their actions and allow viruses to efficiently replicate (11).Polymorphic alleles at the rhesus macaque TRIM5 locus correlate with a 1.3-to 3-log reduction in simian immunodeficiency virus (SIV) replication (7, 10). The mechanism by which TRIM5␣ affects viral replication is unclear, but it appears to act by binding incoming viral capsids and mediating premature viral uncoating (18). A recent study also suggests a role for TRIM5 mediating the early, innate immune response to retroviral infection (14). Rhesus macaque TRIM5 is polymorphic, and the encoded protein includes a TRIM5-cyclophilin A (CypA) chimera in which CypA replaced the TRIM5␣ binding domain (7,10,13,17,19 ) had intermediate plasma viral loads. A less dramatic effect on plasma virus replication was also seen in a cohort of SIVmac251-infected animals by using similar TRIM5 groupings (10).
The role of CD4 ؉ T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV-and SIV-specific CD4؉ T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4 ؉ T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4 ؉ T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4 ؉ T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.
Virus-specific CD8+ T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n=63 of 1240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIVmac239 for their capacity to bind Mamu-A1*007:01, 33 were found to bind with an affinity of 500nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T cell reactivity. In all, eleven of the peptides elicited IFN-γ+ T cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultra-deep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8+ T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8+ T cells and is part of the immune response to SIVmac239.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.