Certain major histocompatibility complex (MHC) class I alleles are associated with the control of human immunodeficiency virus and simian immunodeficiency virus (SIV) replication. We have designed sequence-specific primers for detection of the rhesus macaque MHC class I allele Mamu-B*08 by PCR and screened a cohort of SIV-infected macaques for this allele. Analysis of 196 SIV mac 239-infected Indian rhesus macaques revealed that Mamu-B*08 was significantly overrepresented in elite controllers; 38% of elite controllers were Mamu-B*08 positive compared to 3% of progressors (P ؍ 0.00001). Mamu-B*08 was also associated with a 7.34-fold decrease in chronic phase viremia (P ؍ 0.002). Mamu-B*08-positive macaques may, therefore, provide a good model to understand the correlates of MHC class I allele-associated immune protection and viral containment in human elite controllers.
CD8+ T cells are a key focus of vaccine development efforts for HIV. However, there is no clear consensus as to which of the nine HIV proteins should be used for vaccination. The early proteins Tat, Rev, and Nef may be better CD8+ T cell targets than the late-expressed structural proteins Gag, Pol, and Env. In this study, we show that Gag-specific CD8+ T cells recognize infected CD4+ T lymphocytes as early as 2 h postinfection, before proviral DNA integration, viral protein synthesis, and Nef-mediated MHC class I down-regulation. Additionally, the number of Gag epitopes recognized by CD8+ T cells was significantly associated with lower viremia (p = 0.0017) in SIV-infected rhesus macaques. These results suggest that HIV vaccines should focus CD8+ T cell responses on Gag.
Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIVmac239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat28-35SL8) and the Mamu-B*17-restricted response (Nef165-173IW9) typically select for viral escape variants in early SIVmac239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat28-35SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection
Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.