It has been demonstrated that peripheral injection of anti-amyloid-β (Aβ) antibodies to patients with Alzheimer's disease (AD) and AD transgenic mice facilitate Aβ clearance. We hypothesized that peripheral circulating Aβ-binding proteins also possess the ability to enhance Aβ clearance and the levels of circulating Aβ-binding proteins could serve as early AD biomarkers. Circulating Aβ-binding proteins were isolated from plasma and identified by LC-MS/MS. Their levels were compared among non-demented individuals without AD family history (ND), with AD family history (ND-FH), and patients with mild AD. The results showed that most of the identified Aβ-binding proteins were apolipoproteins, i.e., apoA-I, apoB-100, apoC-III, and apoE. Aβ bound preferentially to apoA-I-enriched HDL, followed by apoC-III- and apoE-enriched VLDL, and bound less favorably to apoB-100-enriched LDL. Levels of apoA-I were reduced in AD patients and could be used to discriminate AD from ND groups (AUC: 0.93); whereas levels of apoC-III were reduced in both ND-FH and AD groups and could be used to differentiate ND-FH from ND individuals (AUC: 0.81). Both the levels of apoA-1 and apoC-III positively correlated with CASI and MMSE scores. In conclusion, these results suggest that plasma apoA-I could be a sensitive AD biomarker and individuals with low plasma levels of apoC-III are at risk for AD.
Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3β, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/β, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3β, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.