Advanced beyond-silicon electronic technology requires discoveries of both new channel materials and ultralow-resistance contacts 1,2 . Atomically thin two-dimensional (2D) semiconductors have great potential for realizing high-performance electronic devices 1,3 . However, because of metal-induced gap states (MIGS) 4-7 , energy barriers at the metalsemiconductor interface, which fundamentally lead to high contact resistances and poor current-delivery capabilities, have restrained the advancement of 2D semiconductor transistors to date 2,8,9 . Here, we report a novel ohmic contact technology between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where MIGS is sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a record-low contact resistance (R C ) of 123 Ω μm, and a recordhigh on-state current density (I ON ) of 1135 µA µm -1 on monolayer MoS 2 . We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS 2 , WS 2 , and WSe 2 . Our reported R C values are a significant improvement for 2D semiconductors, and approaching the quantum limit. This technology unveils the full potential of high-performance monolayer transistors that are on par with the state-of-the-art 3D semiconductors, enabling further device down-scaling and extending Moore's Law.The electrical contact resistance at a metal-semiconductor (M-S) interface has been an increasingly critical, yet unsolved issue for the semiconductor industry, hindering the ultimate
Pediatric obstructive sleep apnea (OSA) is associated with chronic systemic inflammation and with cognitive impairments. This study aimed to investigate the status of proinflammatory cytokines, particularly interleukin 17 (IL-17) and interleukin 23 (IL-23) and cognition in pediatric OSA.Controls and OSA children participated in the study. Exclusion criteria were adenotonsillectomy, heart, neurological and severe psychiatric diseases, craniofacial syndromes, and obesity. Polysomnogram was followed by serum testing for inflammatory markers and neurocognitive tests such as continuous performance task (CPT) and Wisconsin card sorting test, questionnaires, analyses of plasma high-sensitivity C-reactive protein (HS-CRP), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), interleukin 6 (IL-6), IL-17, and IL-23.Seventy-nine, 4 to 12-year-old subjects in 2 groups ended the study: 47 nonobese OSA children (mean age = 7.84 ± 0.56 years, body mass index [BMI] = 16.95 ± 0.47 kg/m2, BMI z-score = 0.15 ± 0.21, and mean apnea–hypopnea index [AHI] = 9.13 ± 1.67 events/h) and 32 healthy control children (mean age = 7.02 ± 0.65 years, with BMI = 16.55 ± 0.58 kg/m2, BMI z-score = −0.12 ± 0.27, and mean AHI = 0.41 ± 0.07 event/h) were enrolled. Serum cytokine analyses showed significantly higher levels of HS-CRP, IL-17, and IL-23 in OSA children (P = 0.002, P = 0.024, and P = 0.047). Regression test showed significant influence of HS-CRP, TNF-α, IL-6, IL-17, and specifically IL-23, with the continuous performance test and Wisconsin card sorting test.OSA children have abnormal levels of IL-17, an interleukin related to T helper 17 cells, a T helper cell involved in development of autoimmunity and inflammation. This high expression level may contribute to the complications of pediatric OSA; we also found a significant influence of inflammatory cytokines, particularly IL-23, on abnormal neurocognitive testing.
We demonstrate a coincidence velocity map imaging apparatus equipped with a novel time-stamping fast optical camera, Tpx3Cam, whose high sensitivity and nanosecond timing resolution allow for simultaneous position and time-of-flight detection. This single detector design is simple, flexible, and capable of highly differential measurements. We show detailed characterization of the camera and its application in strong field ionization experiments.
We demonstrate the applicability of covariance analysis to three-dimensional velocity-map imaging experiments using a fast time stamping detector. Studying the photofragmentation of strong-field doubly ionized D 2 O molecules, we show that combining high count rate measurements with covariance analysis yields the same level of information typically limited to the "gold standard" of true, low count rate coincidence experiments, when averaging over a large ensemble of photofragmentation events. This increases the effective data acquisition rate by approximately 2 orders of magnitude, enabling a new class of experimental studies. This is illustrated through an investigation into the dependence of three-body D 2 O 2+ dissociation on the intensity of the ionizing laser, revealing mechanistic insights into the nuclear dynamics driven during the laser pulse. The experimental methodology laid out, with its drastic reduction in acquisition time, is expected to be of great benefit to future photofragment imaging studies.
The results suggest that a paramedian approach to arytenoid adduction combined with strap muscle transposition is a safe and effective method for treating glottal incompetence, particularly in patients with unilateral paralytic dysphonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.