Complex Event Processing (CEP) has emerged as a technology of choice for high performance event analytics in time-critical decisionmaking applications. Yet it is becoming increasingly difficult to support high-performance event processing due to the rising number and complexity of event pattern queries and the increasingly high velocity of event streams. In this work we design the SPASS framework that successfully tackles these demanding CEP workloads. Our SPASS optimizer identifies opportunities for effective shared processing among CEP queries by leveraging time-based event correlations among queries. The problem of pattern sharing is shown to be NP-hard by reducing the Minimum Substring Cover problem to our CEP pattern sharing problem. The SPASS optimizer is designed that finds a shared pattern plan in polynomial-time covering all sequence patterns while still guaranteeing an optimality bound. To execute this shared pattern plan, the SPASS runtime employs stream transactions that assure concurrent shared maintenance and re-use of sub-patterns across queries. Our experimental study confirms that the SPASS framework achieves over 16 fold performance improvement for a wide range of experiments compared to the state-of-the-art solution.
Event processing applications from financial fraud detection to health care analytics continuously execute event queries with Kleene closure to extract event sequences of arbitrary, statically unknown length, called Complete Event Trends (CETs). Due to common event sub-sequences in CETs, either the responsiveness is delayed by repeated computations or an exorbitant amount of memory is required to store partial results. To overcome these limitations, we define the CET graph to compactly encode all CETs matched by a query. Based on the graph, we define the spectrum of CET detection algorithms from CPU-optimal to memoryoptimal. We find the middle ground between these two extremes by partitioning the graph into time-centric graphlets and caching partial CETs per graphlet to enable effective reuse of these intermediate results. We reveal cost monotonicity properties of the search space of graph partitioning plans. Our CET optimizer leverages these properties to prune significant portions of the search to produce a partitioning plan with minimal CPU costs yet within the given memory limit. Our experimental study demonstrates that our CET detection solution achieves up to 42-fold speedup even under rigid memory constraints compared to the state-of-the-art techniques in diverse scenarios.
Distributed stream processing systems must function efficiently for data streams that fluctuate in their arrival rates and data distributions. Yet repeated and prohibitively expensive load reallocation across machines may make these systems ineffective, potentially resulting in data loss or even system failure. To overcome this problem, we propose a comprehensive solution, called the Robust Load Distribution (RLD) strategy, that is resilient under data fluctuations. RLD provides ϵ-optimal query performance under an expected range of load fluctuations without suffering from the performance penalty caused by load migration. RLD is based on three key strategies. First, we model robust distributed stream processing as a parametric query optimization problem in a parameter space that captures the stream fluctuations. The notions of both robust logical and robust physical plans that work together to proactively handle all ranges of expected fluctuations in parameters are abstracted as overlays of this parameter space. Second, our Early-terminated Robust Partitioning ( ERP ) finds a combination of robust logical plans that together cover the parameter space, while minimizing the number of prohibitively expensive optimizer calls with a probabilistic bound on the space coverage. Third, we design a family of algorithms for physical plan generation. Our GreedyPhy exploits a probabilistic model to efficiently find a robust physical plan that sustains most frequently used robust logical plans at runtime. Our CorPhy algorithm exploits operator correlations for the robust physical plan optimization. The resulting physical plan smooths the workload on each node under all expected fluctuations. Our OptPrune algorithm, using CorPhy as baseline, is guaranteed to find the optimal physical plan that maximizes the parameter space coverage with a practical increase in optimization time. Lastly, we further expand the capabilities of our proposed RLD framework to also appropriately react under so-called “space drifts”, that is, a space drift is a change of the parameter space where the observed runtime statistics deviate from the expected optimization-time statistics. Our RLD solution is capable of adjusting itself to the unexpected yet significant data fluctuations beyond those planned for via covering the parameter space. Our experimental study using stock market and sensor network streams demonstrates that our RLD methodology consistently outperforms state-of-the-art solutions in terms of efficiency and effectiveness in highly fluctuating data stream environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.