In recent years, Massively Parallel Processors (MPPs) have gained ground enabling vast amounts of data processing. In such environments, data is partitioned across multiple compute nodes, which results in dramatic performance improvements during parallel query execution. To evaluate certain relational operators in a query correctly, data sometimes needs to be re-partitioned (i.e., moved) across compute nodes. Since data movement operations are much more expensive than relational operations, it is crucial to design a suitable data partitioning strategy that minimizes the cost of such expensive data transfers. A good partitioning strategy strongly depends on how the parallel system would be used. In this paper we present a partitioning advisor that recommends the best partitioning design for an expected workload. Our tool recommends which tables should be replicated (i.e., copied into every compute node) and which ones should be distributed according to specific column(s) so that the cost of evaluating similar workloads is minimized. In contrast to previous work, our techniques are deeply integrated with the underlying parallel query optimizer, which results in more accurate recommendations in a shorter amount of time. Our experimental evaluation using a real MPP system, Microsoft SQL Server 2008 Parallel Data Warehouse, with both real and synthetic workloads shows the effectiveness of the proposed techniques and the importance of deep integration of the partitioning advisor with the underlying query optimizer.
This paper presents Polybase, a feature of SQL Server PDW V2 that allows users to manage and query data stored in a Hadoop cluster using the standard SQL query language. Unlike other database systems that provide only a relational view over HDFSresident data through the use of an external table mechanism, Polybase employs a split query processing paradigm in which SQL operators on HDFS-resident data are translated into MapReduce jobs by the PDW query optimizer and then executed on the Hadoop cluster. The paper describes the design and implementation of Polybase along with a thorough performance evaluation that explores the benefits of employing a split query processing paradigm for executing queries that involve both structured data in a relational DBMS and unstructured data in Hadoop. Our results demonstrate that while the use of a splitbased query execution paradigm can improve the performance of some queries by as much as 10X, one must employ a cost-based query optimizer that considers a broad set of factors when deciding whether or not it is advantageous to push a SQL operator to Hadoop. These factors include the selectivity factor of the predicate, the relative sizes of the two clusters, and whether or not their nodes are co-located. In addition, differences in the semantics of the Java and SQL languages must be carefully considered in order to avoid altering the expected results of a query.
Automated physical design tuning for database systems has recently become an active area of research and development. Existing tuning tools explore the space of feasible solutions by repeatedly optimizing queries in the input workload for several candidate configurations. This general approach, while scalable, often results in tuning sessions waiting for results from the query optimizer over 90% of the time. In this paper we introduce a novel approach, called Configuration-Parametric Query Optimization, that drastically improves the performance of current tuning tools. By issuing a single optimization call per query, we are able to generate a compact representation of the optimization space that can then produce very efficiently execution plans for the input query under arbitrary configurations. Our experiments show that our technique speedsup query optimization by 30x to over 450x with virtually no loss in quality, and effectively eliminates the optimization bottleneck in existing tuning tools. Our techniques open the door for new, more sophisticated optimization strategies by eliminating the main bottleneck of current tuning tools.
Immortal DB is a transaction time database system designed to enable high performance for temporal applications. It is built into a commercial database engine, Microsoft SQL Server. This paper describes how we integrated a temporal indexing technique, the TSB-tree, into Immortal DB to serve as the core access method. The TSB-tree provides high performance access and update for both current and historical data. A main challenge was integrating TSB-tree functionality while preserving original B+tree functionality, including concurrency control and recovery. We discuss the overall architecture, including our unique treatment of index terms, and practical issues such as uncommitted data and log management. Performance is a primary concern. To increase performance, versions are locally delta compressed, exploiting the commonality between adjacent versions of the same record. This technique is also applied to index terms in index pages. There is a tradeoff between query performance and storage space. We discuss optimizing performance regarding this tradeoff throughout the paper. The result of our efforts is a high-performance transaction time database system built into an RDBMS engine, which has not been achieved before. We include a thorough experimental study and analysis that confirms the very good performance that it achieves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.