We demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable). Hydrogen bonding is identified as the reason behind these features. In addition, the absorbed water is quantitatively separated into two parts, namely, the free water and bound water. Their individual contribution on the glass transition temperature is identified.
Highly transparent antifogging/anti-icing coatings were developed from amphiphilic block copolymers of polyhedral oligomeric silsesquioxane-poly[2-(dimethylamino)ethyl methacrylate]-block-poly(sulfobetaine methacrylate) (POSS-PDMAEMA-b-PSBMA) with a small amount of ethylene glycol dimethacrylate (EGDMA) via UV-curing. The excellent antifogging properties of the prepared coatings were originated from the hygroscopicity of both PDMAEMA and PSBMA blocks in the semi-interpenetrating polymer network (SIPN) with polymerization of EGDMA and hydrophobic POSS clusters aggregated on the surface. PDMAEMA with a lower critical solution temperature and PSBMA with an upper critical solution temperature in the block copolymers facilitated dispersion and absorption of water molecules into the SIPN coatings, fulfilling the enhanced antifogging function. Analysis of differential scanning calorimetry further confirmed that there was bond water and nonfreezable bond water in the SIPN coatings. The amphiphilic SIPN coatings exhibited the anti-icing ability with a freezing delay time of more than 2 min at -15 °C, owing to the aggregation of hydrophobic POSS groups and the self-lubricating aqueous layer generated by nonfreezable bond water on the surface. The prepared transparent antifogging/anti-icing coatings could have novel potential applications in practice.
Owing to the difficulty in acquiring compounds with combined high energy bandgaps and lower‐lying intramolecular charge‐transfer excited states, the development of ultraviolet (UV) thermally activated delayed fluorescence (TADF) materials is quite challenging. Herein, through interlocking of the diphenylsulfone (PS) acceptor unit of a reported deep‐blue TADF emitter (CZ‐PS) by a dimethylmethylene bridge, CZ‐MPS, a UV‐emissive TADF compound bearing a shallower LUMO energy level and a more rigid structure than those of CZ‐PS is achieved. This represents the first example of a UV‐emissive TADF compound. Organic light‐emitting diode (OLED) using CZ‐MPS as the guest material can emit efficient UV light with emission maximum of 389 nm and maximum total external quantum efficiency (EQEmax) of 9.3%. Note that this EQEmax value is twice as high as the current record EQEmax (4.6%) for UV‐OLEDs. This finding may shed light on the molecular design strategy for high‐performance UV‐OLED materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.