As a green and effective technique in the production of a large number of valuable products, the microbial conversion of chitinous fishery wastes is receiving much attention. In this study, protease production using the Paenibacillus mucilaginosus TKU032 strain was conducted on culture media containing several common types of chitinous fishery by-products serving as the carbon and nitrogen (C/N) nutrition source. Among the chitinous wastes, 1.5% (w/v) shrimp head powder (SHP) was found to be the most appropriate nutritional source for protease production when a maximal enzyme activity of 3.14 ± 0.1 U/mL was observed on the 3rd day of the culture period. The molecular mass of P. mucilaginosus TKU032 protease was estimated to be nearly 32 kDa by the polyacrylamide gel electrophoresis method. The residual SHP obtained from the culture medium was also considered to be utilized for chitin extraction. The deproteinization rate of the fermentation was estimated to be 45%, and the chitin obtained from fermented SHP (fSHP) displayed a similar characteristic Fourier-transform infrared spectroscopy (FTIR) profile as that from SHP. In addition, SHP, fSHP, and chitins obtained from SHP and fSHP were investigated for their adsorptive capacity of nine types of dyes, and chitin obtained from fSHP displayed a good adsorption rate on Congo Red and Red No. 7, at 99% and 97%, respectively. In short, the results provide potential support for the utilization of SHP in the production of P. mucilaginosus TKU032 protease via the fermentation as well as the preparation of chitin from fSHP as an effective dye adsorbent.
Chitinous fishery by-products have great application in the production of various bioactive compounds. In this study, Paenibacillus elgii TKU051, a protease-producing bacterial strain, was isolated using a medium containing 1% squid pens powder (SPP) as the sole carbon/nitrogen (C/N) source. P. elgii TKU051 was found to produce at least four proteases with molecular weights of 100 kDa, 57 kDa, 43 kDa, and 34 kDa (determined by the gelatin zymography method). A P. elgii TkU051 crude enzyme cocktail was optimally active at pH 6–7 and 60 °C. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and α-glucosidase inhibitory activity of the hydrolysates obtained from the hydrolysis of shrimp shell powder, shrimp head powder, shrimp meat powder, fish head powder and soya bean powder catalyzed by the P. elgii TkU051 crude enzyme cocktail were also evaluated. P. elgii TKU051 exhibited a high deproteinization capacity (over 94%) on different kinds of shrimp waste (shrimp heads and shells; fresh and cooked shrimp waste; shrimp waste dried by oven and lyophilizer), and the Fourier-transform infrared spectroscopy profile of the chitin obtained from the deproteinization process displayed the characteristic of chitin. Finally, the obtained chitin exhibited an effect comparable to commercial chitin in terms of adsorption against Congo Red (90.48% and 90.91%, respectively). Thus, P. elgii TKU051 showed potential in the reclamation of chitinous fishery by-products for proteases production and chitin extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.