PurposeFailure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis.Design/methodology/approachThe bootstrap resampling method is employed in S-version finite element model (S-FEM) to generate the random variables in this simulation analysis. The SIF analysis studies are promoted by bootstrap S-version Finite Element Model (BootstrapS-FEM). Virtual crack closure-integral method (VCCM) is an important concept to compute the energy release rate and SIF. The semielliptical crack shape is applied with different crack shape aspect ratio in this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model.FindingsThe mean of BootstrapS-FEM is calculated from 100 samples by the resampling method. The bounds are computed based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is validated with Newman–Raju solution and deterministic S-FEM within 95 percent confidence bounds. All possible values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred to as point estimation. The Newman–Raju solution and deterministic S-FEM values are within the 95 percent confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction with less than 6 percent of percentage error.Originality/valueThe bootstrap resampling method is employed in S-FEM to generate the random variables in this simulation analysis.
Understanding the shift of covariance matrices in any process is not an easy task. From the literatures, the most popular and widely used test for covariance shift is Jennrich’s test and Box’s M test. It is important to note that Box and also Jennrich have constructed their own test by involving sample covariance matrix determinant or, equivalently, generalized variance (GV) as multivariate variability measure. However, GV has serious limitations as a multivariate variability measure. Those limitations of GV motivate us to use a proposed test based on an alternative measure of multivariate variability called vector variance (VV). However, if after hypothesis testing the hypothesis of stable process covariance is rejected, then the next problem is to find the cause of that situation. In this paper, network topology approach will be used to understand the shift. A case study will be discussed and presented to illustrate the advantage of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.