New Findings r What is the central question of this study?Previous studies have shown that hypersympathetic nerve activity results in ventricular electrophysiological changes and facilitates the occurrence of ventricular arrhythmias. Vagus nerve stimulation has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. However, the actions of vagus nerve stimulation on hypersympathetic nerve activity-induced ventricular electrophysiological changes are still unknown. r What is the main finding and its importance?We show that vagus nerve stimulation is able to reverse hypersympathetic nerve activity-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation. These findings further suggest that vagus nerve stimulation may be an effective treatment option for ventricular arrhythmias, especially in patients with myocardial infarction or heart failure.Vagus nerve stimulation (VNS) has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. This study aimed to investigate the effects of VNS on ventricular electrophysiological changes induced by hypersympathetic nerve activity. Seventeen open-chest dogs were subjected to left stellate ganglion stimulation (LSGS) for 4 h to simulate hypersympathetic tone. All animals were randomly assigned to the VNS group (n = 9) or the control group (n = 8). In the VNS group, VNS was performed at the voltage causing a 10% decrease in heart rate for hours 3-4 during 4 h of LSGS. During the first 2 h of LSGS, the ventricular effective refractory period (ERP) and action potential duration (APD) were both progressively and significantly decreased; the spatial dispersion of ERP, maximal slope of the restitution curve and pacing cycle length of APD alternans were all increased. With LSGS + VNS during the next 2 h, there was a significant return of all the altered electrophysiological parameters towards baseline levels. In the eight control dogs that received 4 h of LSGS without VNS, all the parameters changed progressively, but without any reversals. The ventricular fibrillation threshold was higher in the VNS group than in the control group (17.3 ± 3.4 versus 11.3 ± 3.8 V, P < 0.05). The present study demonstrated that VNS was able to reverse LSGS-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation.
ABSTRACT. The tumor necrosis factor-alpha (TNF-α) G-308A polymorphism has been suggested to be a susceptibility factor for myocardial infarction (MI). However, differing results from various studies have led to controversial conclusions. Hence, we performed a meta-analysis to evaluate the association between TNF-α G-308A polymorphism and MI. Reported studies published before March 30, 2015 were included and analyzed from the PubMed and Embase databases. Study selection and data extraction were carried out independently by two authors. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the association between the selected variables using the Comprehensive Meta-Analysis v2.2 software. In total, 12 publications with 13 case-control studies consisting of 6037 cases and 7262 controls However, when subgroup analysis was performed according to the stages of MI, results indicated that there was a significant association between TNF-α G-308A polymorphism and the risk of acute MI. Other subgroup analyses revealed no significant associations. Current evidence suggests that TNF-α G-308A polymorphism may be associated with increased risk for acute MI.
Naringin (NRG) has been reported to exert cardioprotective effects against multiple cardiovascular diseases, including lipopolysaccharide-induced and hyperglycemia-induced myocardial injury. However, the role of NRG in myocardial ischemia/reperfusion (I/R) injury remains unclear. In the present study, the PI3K/Akt pathway was investigated to evaluate the possible mechanisms underlying the roles of NRG in myocardial ischemia/reperfusion (I/R) injury. The levels of cardiac enzymes were measured by ELISA to evaluate the optimal dosage of NRG that could protect against myocardial I/R injury. Rats were administered 100 mg/kg of NRG and activities of myocardial enzymes, the level of cardiac apoptosis and inflammation, oxidant response, autophagy indicators and echocardiography were evaluated. The level of corresponding proteins was measured using western blotting. The results indicated that NRG elicited the best cardioprotective effects at a dose of 100 mg/kg by significantly reducing the levels of myocardial enzymes, apoptosis, inflammation, oxidative response and infarct size. Furthermore, NRG alleviated contractile dysfunction by increasing the left ventricular ejection fraction and fractional shortening. In addition, NRG markedly promoted the phosphorylation of Akt, while decreasing the level of autophagy indicator beclin-1 and the microtubule-associated protein 1B-light chain 3 (LC3B) II/ LC3BI ratio. However, PI3K/Akt inhibitor (LY294002) partially reduced the NRG induced phosphorylation of Akt and the reduction in beclin-1, along with the LC3BII/LC3BI ratio. The results of the present study demonstrated that NRG could attenuate myocardial I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.