Depth estimation can provide tremendous help for object detection, localization, path planning, etc. However, the existing methods based on deep learning have high requirements on computing power and often cannot be directly applied to autonomous moving platforms (AMP). Fifth-generation (5G) mobile and wireless communication systems have attracted the attention of researchers because it provides the network foundation for cloud computing and edge computing, which makes it possible to utilize deep learning method on AMP. This paper proposes a depth prediction method for AMP based on unsupervised learning, which can learn from video sequences and simultaneously estimate the depth structure of the scene and the ego-motion. Compared with the existing unsupervised learning methods, our method makes the spatial correspondence among pixel points consistent with the image area by smoothing the 3D corresponding vector field based on 2D image, which effectively improves the depth prediction ability of the neural network. Our experiments on the KITTI driving dataset demonstrated that our method outperformed other previous learning-based methods. The results on the Apolloscape and Cityscapes datasets show that our proposed method has a strong universality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.