A 3D non-interpenetrating porous metal-organic framework [Pb2(H2TCPP)]·4DMF·H2O (Pb-TCPP) (H6TCPP = 5,10,15,20-tetra(carboxyphenyl)porphyrin) was synthesized by employment of a robust porphyrin ligand. Pb-TCPP exhibits a one-dimensional channel possessing fairly good capability of gas sorption for N2, H2, Ar, and CO2 gases, and also features selectivity for CO2 over CH4 at 298 K. Furthermore, Pb-TCPP shows electrocatalytic activity for water oxidation in alkaline solution. It is the first 3D porous Pb-MOF that exhibits both gas adsorption properties and electrocatalytic activity for an oxygen evolution reaction (OER).
Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2′ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2′ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.