Mesozoic basins in northwest China provide important records for investigating relationships between intraplate deformation in Central Asia and tectonic processes at Asian boundaries. The present study, using well, seismic, outcrop, and thermochronology data in the Junggar Basin and neighboring areas, describes the main features of Jurassic strata in the basin, analyzes the Jurassic evolution of the basin and neighboring mountain belts, and discusses possible mechanisms of Jurassic intraplate deformation in Central Asia. During the Early-Middle Jurassic, episodic uplift of surrounding mountain belts kept the Junggar Basin a contractional closed basin, and alluvial fan, fluvial, delta, and lacustrine depositional environments successively developed from surrounding ranges to the central basin. During the Late Jurassic, the western and central parts of the basin were folded and uplifted, and deposition migrated mainly to the eastern basin. During the latest Jurassic-earliest Cretaceous, pre-Cretaceous strata in the eastern and northeastern Junggar Basin were folded and uplifted, and coarse-grained sediments were transported from surrounding uplifts to the central basin. We suggest that Jurassic episodic deformation events in the Junggar Basin and other areas of Central Asia are related to the Qiangtang collision during the Late Triassic-Early Jurassic, the closure of the western Mongol-Okhotsk Ocean at the Early/Middle Jurassic boundary, a collision of a microcontinent in the Pamir with the southern Asian margin during the late Middle Jurassic-early Late Jurassic, the collision of the Kolyma-Omolon Block with Siberia at the end of the Jurassic, and the subsequent closure of the eastern Mongol-Okhotsk Ocean during the latest Jurassic-earliest Cretaceous.
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multidisciplinary investigation of fault mechanics and seismogenesis along subduction megathrusts and includes reflection and refraction seismic imaging, direct sampling by drilling, in situ measurements, and long-term monitoring in conjunction with laboratory and numerical modeling studies. The fundamental objectives of NanTroSEIZE are to characterize the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout an active plate boundary system. As part of the NanTroSEIZE program, operations during Integrated Ocean Drilling Program (IODP) Expedition 348 were planned to extend and case riser Hole C0002F, begun during IODP Expedition 326 in 2010 and continued during Expedition 338 in 2012, from 860 to 3600 meters below the seafloor (mbsf).Riser operations during Expedition 348 were carried out and deepened the hole to 3058 mbsf, a new maximum depth record in scientific ocean drilling. Operations included installation and cementing of 13 3 ⁄8 inch casing to 2008.9 mbsf and an 11¾ inch liner to 2922.5 mbsf, stabilizing the borehole for future deepening. Reaching this depth required two sidetracking operations from the original Hole C0002F, resulting in the designation of Holes C0002N and C0002P for the successively deeper sidetracks. During drilling, a suite of logging-while-drilling (LWD) and measurement-while-drilling (MWD), mud-gas, and cuttings data were collected over the interval from 2162.5 to 3058.5 mbsf in Hole C0002P, and a partial suite was collected in Hole C0002N. The interval from 2163 to 2218 mbsf was cored with the rotary core barrel (RCB). Planned future riser drilling operations will deepen the hole to penetrate the plate boundary fault at ~4600-5200 mbsf.Additionally, a test hole for a prototype slimhole small-diameter RCB (SD-RCB) coring system, Hole C0002M, was drilled in riserless mode near Hole C0002F. The hole was advanced to 475 mbsf, where four cores were collected to 512.5 mbsf.Overall, Expedition 348 sampled and logged a deep interval in Holes C0002N and C0002P within the inner accretionary wedge, from 856 to 3058.5 mbsf, including a never-before sampled zone in the lowermost ~1 km of drilling. Cores were collected over a 55.5 m interval from 2163 to 2218.5 mbsf. The sampled sedimentary rocks are composed of hemipelagic sediment and fine turbi-
This report summarizes the results of X-ray diffraction analyses of cuttings samples (1-4 mm diameter) from Integrated Ocean Drilling Program Expedition 338 Hole C0002F, located offshore southwest Japan. We analyzed 37 specimens (<2 µm size fraction) from the upper Nankai accretionary prism, collected between 1190 and 1990 meters below seafloor. Smectite is generally the most abundant mineral in the clay-size fraction. Within lithologic Unit IV, smectite in the bulk sediment averages 25.1 wt% (standard deviation = 3.6), whereas illite and kaolinite + chlorite average 18.9 (standard deviation = 2.0) and 11.3 wt% (standard deviation = 2.3), respectively. Within Unit V, smectite in the bulk sediment decreases to an average of 21.8 wt% (standard deviation = 2.8) and values of illite and kaolinite + chlorite average 21.8 (standard deviation = 3.5) and 14.1 wt% (standard deviation = 3.5 and 2.4), respectively. The expandability of illite/smectite averages 69%, and values decrease downhole. The proportion of illite in illite/ smectite mixed-layer clays averages 25%, and those values increase downhole. Values of illite crystallinity index (average = 0.52Δ°2θ) are consistent with detrital source areas exposed to advanced levels of diagenesis and anchizone metamorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.