Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop-and regionspecific adaptation strategies to ensure food security for an increasing world population.climate change impact | global food security | major food crops | temperature increase | yield C rops are sensitive to climate change, including changes in temperature and precipitation, and to rising atmospheric CO 2 concentration (1, 2). Among the changes, temperature increase has the most likely negative impact on crop yields (3, 4), and regional temperature changes can be projected from climate models with more certainty than precipitation. Meteorological records show that mean annual temperatures over areas where wheat, rice, maize, and soybean are grown have increased by ∼1°C during the last century (Fig. 1A) and are expected to continue to increase over the next century (Fig. 1B) -more so if greenhouse gas emissions continue to increase. It is thus necessary to quantify the impact of temperature increase on global crop yields, including any spatial variations, to first assess the risk to world food security, and then to develop targeted adaptive strategies to feed a burgeoning world population (5).Several methods have been developed to assess the impact of temperature increase on crop yields (6). Process-based crop models characterize crop growth and development in daily time steps and can be used to simulate the temperature response of yield either in areas around the globe defined by grids or at selected field sites or points (1, 7). A third method, statistical modeling, uses observed regional yields and historical weather records to fit regression functions to predict crop responses (8,9). A fourth method is to artificially warm crops under nearnatural field conditions to directly measure the impact of increased Significance Agricultural production is vulnerable to climate change. Understanding climate change, especially the temperature impacts, is...
This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North and South Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's terrestrial carbon sink from these three approaches are comparable: −0.293±0.033 PgC yr<sup>−1</sup> from inventory–remote sensing model–data fusion approach, −0.413±0.141 PgC yr<sup>−1</sup> (not considering biofuel emissions) or −0.224±0.141 PgC yr<sup>−1</sup> (considering biofuel emissions) for carbon cycle models, and −0.270±0.507 PgC yr<sup>−1</sup> for atmospheric inverse models. Here and in the following, the numbers behind ± signs are standard deviations. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO<sub>2</sub> together resulted in a carbon sink of −0.289±0.135 PgC yr<sup>−1</sup>, while land-use change and nitrogen deposition had a contribution of −0.013±0.029 PgC yr<sup>−1</sup> and −0.107±0.025 PgC yr<sup>−1</sup>, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–27% of East Asia's CO<sub>2</sub> emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial territory over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO<sub>2</sub> changes, which cannot be considered as independent for their effects on carbon storage
No abstract
Wheat growth is sensitive to temperature, but the effect of future warming on yield is uncertain. Here, focusing on China, we compiled 46 observations of the sensitivity of wheat yield to temperature change (SY,T, yield change per °C) from field warming experiments and 102 SY,T estimates from local process-based and statistical models. The average SY,T from field warming experiments, local process-based models and statistical models is −0.7±7.8(±s.d.)% per °C, −5.7±6.5% per °C and 0.4±4.4% per °C, respectively. Moreover, SY,T is different across regions and warming experiments indicate positive SY,T values in regions where growing-season mean temperature is low, and water supply is not limiting, and negative values elsewhere. Gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project appear to capture the spatial pattern of SY,T deduced from warming observations. These results from local manipulative experiments could be used to improve crop models in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.