A love-mode surface acoustic wave (SAW) biosensor based on ST-cut quartz was developed for highly selective and label-free detection of carcinoembryonic antigen (CEA).The delay line area of an interdigital transducer (IDT) based SAW device was coated with gold and then chemically modified through thioglycolic acid-EDC/NHS reaction mechanism. A self-assembled monolayer of anti-CEA was further immobilized on the bioreceptors through the coupling layer. The biosensing capability of the SAW device was evaluated using solutions of CEA with various concentrations and limit of detection was obtained at 0.31 ng/ml of CEA, which is better than the results reported by the literatures available for CEA detection using SAW device. The real-time detection capability of the biosensor was evaluated using clinical serum samples and selectivity was evaluated using mixed solutions of CEA with other common tumor marking proteins. Long-term stability of the biosensor was also evaluated over a period of 30 days and the biosensing performance has shown only 8% decrease in performance within the whole period. The binding of CEA onto the bioreceptor was evaluated through Langmuir and Freundlich sorption isotherm kinetic studies as well.
Allergic responses are mainly caused by IgE, which is often located on the cell surface. The current diagnostic method detects both allergen-specific IgE and total IgE levels, but a number of allergic patients have a normal serum IgE level, which is a poor clinical correlate for allergy. Here, we developed a simple method to detect the level of cell-bound IgE by dissociating it from blood cells with lactic acid. Dissociated cell-bound IgE and plasma IgE levels were detected using the same ELISA kit at the same time. We established two clinical cohorts: an allergic patient group and a healthy participant group. In general, cell-bound IgE correlated well with plasma IgE; however, some patients exhibited high cellbound IgE levels but low plasma IgE levels. We recommended 350 ng/mL peripheral blood total IgE (cell-bound ige + plasma IgE) as the cut-off value for allergy diagnosis. Using this indicator, 90.32% of our allergic patients were correctly diagnosed. The peripheral blood total IgE level is a promising clinical diagnostic indicator in allergic patients and will provide more guidance for allergy diagnosis and therapeutic evaluation.Immunoglobulin E (IgE) plays a key role in the development of allergic diseases 1,2 , and it is necessary to detect the IgE level for diagnosis and treatment evaluation 3 .The concentration of IgE in the circulation is very low (below 240 ng/ml in healthy individuals); it is the least prevalent antibody type, with a level much lower than the normal level of IgG (5-10 mg/ml) 4 . The half-life of free IgE in the blood is only 2-3 days, while IgE bound to the high-affinity receptor FcεRI on mast cells or basophils is stable for several weeks 5 . Most IgE is bound to cells through its receptors, leaving only a small proportion free in the plasma 6 . Serum IgE levels are very important for the diagnosis of allergies and generally correlate with disease severity 7 . However, the clinical detection of IgE is limited to free serum/plasma IgE, which ignores the large contribution of cell-bound IgE 8 . A number of allergic patients have normal serum IgE levels, which is why the World Allergy Association does not recommend the use of total IgE as a diagnostic guideline for allergy 9 . The level of free IgE in the blood is usually measured by ImmunoCAP 10 .Allergen-specific IgE is the causative agent of allergic disease. Several studies have reported that specific IgE levels correlate well with the severity of allergy; however, a relatively high number of molecules must be defined and produced at a sufficient quality to cover all clinically important allergen specificities 11 . Not all allergens that are in extracts have been defined at the molecular level yet. Other allergens have been well characterized but have not been produced at the quality level required for component-resolved diagnostic tests. The skin prick test is the gold standard for diagnostic allergy tests and is used to confirm allergic sensitization to suspected allergens and provide guidance for the treatment of patients. While...
When hyperacute rejection is avoided by deletion of Gal expression in the pig, delayed xenograft rejection (DXR) becomes a major immunologic barrier to successful xenotransplantation. This study was to investigate the potential antigens involved in DXR. We isolated primary renal microvascular endothelial cells (RMEC) and aortic endothelial cells (AEC) from a GGTA1/CMAH double-knockout (DKO) pig (and a GGTA1-KO pig) and immunized cynomolgus monkeys with both of these cells. After sensitization, monkey serum antibody binding and cytotoxicity to RMEC was significantly higher than to AEC(p < 0.05), suggesting that RMEC are more immunogenic than AEC. Transcriptome sequencing of GGTA1/CMAH DKO pigs indicated that the expression of 1,500 genes was higher in RMEC than in AEC, while expression of 896 genes was lower. Next, we selected 101 candidate genes expressed only in pig RMEC, but not in pig AEC or in monkey or human RMEC. When these genes were knocked out individually in GGTA1/CMAH DKO RMEC, 32 genes were associated with reduced antibody binding, indicating that these genes might be primary immunologic targets involved in DXR. These genes may be important candidates for deletion in producing pigs against which there is a reduced primate immune response in pig kidney xenograft.
Background. Type 1 diabetes (T1DM) is a chronic autoimmune disease characterized by T-cell–mediated destruction of insulin-producing beta cells. Evidence shows that patients with T1DM and mice used in specific diabetic models both exhibit changes in their intestinal microbiota and dysregulated microbiota contributes to the pathogenesis of T1DM. Islet transplantation (Tx) is poised to play an important role in the treatment of T1DM. However, whether treatment of T1DM with islet Tx can rescue dysregulated microbiota remains unclear. Methods. In this study, we induced diabetic C57BL/6 mice with streptozotocin. Then treatment with either insulin administration, or homogenic or allogenic islet Tx was performed to the diabetic mice. Total DNA was isolated from fecal pellets and high-throughput 16S rRNA sequencing was used to investigate intestinal microbiota composition. Results. The overall microbial diversity was comparable between control (nonstreptozotocin treated) and diabetic mice. Our results showed the ratio of the Bacteroidetes: Firmicutes between nondiabetic and diabetic mice was significant different. Treatment with islet Tx or insulin partially corrects the dysregulated bacterial composition. At the genus level, Bacteroides, Odoribacter, and Alistipes were associated with the progression and treatment efficacy of the disease, which may be used as a biomarker to predict curative effect of treatment for patients with T1DM. Conclusions. Collectively, our results indicate that diabetic mice show changed microbiota composition and that treatment with insulin and islet Tx can partially correct the dysregulated microbiota.
Rationale : Hepatocellular carcinoma (HCC) is a primary malignancy of the liver that is the leading cause of cancer-related mortality worldwide. However, genetic alterations and mechanisms underlying HCC development remain unclear. Methods: Tissue specimens were used to evaluate the expression of DEAD-Box 56 (DDX56) to determine its prognostic value. Colony formation, CCK8, and EdU-labelling assays were performed to assess the effects of DDX56 on HCC proliferation. The in vivo role of DDX56 was evaluated using mouse orthotopic liver xenograft and subcutaneous xenograft tumor models. Dual-luciferase reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays were performed to examine the effect of DDX56 on the MIST1 promoter. Results: DDX56 expression in HCC tissues was elevated and this increase was strongly correlated with poor prognoses for HCC patients. Functionally, DDX56 promoted HCC cell proliferation both in vitro and in vivo , while mechanistically interacting with MECOM to promote HCC proliferation by mono-methylating H3K9 (H3K9me1) on the MIST1 promoter, leading to enhanced MIST1 transcription and subsequent regulation of the PTEN/AKT signaling pathway, which promotes HCC proliferation. More importantly, the PTEN agonist, Oroxin B (OB), blocked the DDX56-mediated PTEN-AKT signaling pathway, suggesting that treating HCC patients with OB may be beneficial as a therapeutic intervention. Furthermore, we observed that ZEB1 bound to DDX56 and transcriptionally activated DDX56, leading to HCC tumorigenesis. Conclusions: Our results indicated that the ZEB1-DDX56-MIST1 axis played a vital role in sustaining the malignant progression of HCC and identified DDX56 as a potential therapeutic target in HCC tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.