Periodontitis is a widespread oral disease characterized by continuous inflammation of the periodontal tissue and an irreversible alveolar bone loss, which eventually leads to tooth loss. Four-octyl itaconate (4-OI) is a cell-permeable itaconate derivative and has been recognized as a promising therapeutic target for the treatment of inflammatory diseases. Here, we explored, for the first time, the protective effect of 4-OI on inhibiting periodontal destruction, ameliorating local inflammation, and the underlying mechanism in periodontitis. Here we showed that 4-OI treatment ameliorates inflammation induced by lipopolysaccharide in the periodontal microenvironment. 4-OI can also significantly alleviate inflammation and alveolar bone loss via Nrf2 activation as observed on samples from experimental periodontitis in the C57BL/6 mice. This was further confirmed as silencing Nrf2 blocked the antioxidant effect of 4-OI by downregulating the expression of downstream antioxidant enzymes. Additionally, molecular docking simulation indicated the possible mechanism under Nrf2 activation. Also, in Nrf2−/− mice, 4-OI treatment did not protect against alveolar bone dysfunction due to induced periodontitis, which underlined the importance of the Nrf2 in 4-OI mediated periodontitis treatment. Our results indicated that 4-OI attenuates inflammation and oxidative stress via disassociation of KEAP1-Nrf2 and activation of Nrf2 signaling cascade. Taken together, local administration of 4-OI offers clinical potential to inhibit periodontal destruction, ameliorate local inflammation for more predictable periodontitis.
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.