A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.
The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2′,3′-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-like activities than (+)-ABA including inhibitory effects on the seed germination of lettuce and A. thaliana, wheat embryo germination and rice seedling elongation. The PP2C (protein phosphatases 2C) activity assay showed that (+)-iso-PhABA acted as a potent and selective ABA receptor agonist, which is preferred to PYL10. In some cases, (−)-iso-PhABA showed moderate to high activity for the PYL protein inhibiting PP2C activity, suggesting different mechanisms of action of iso-PhABA and ABA. The complex crystal structure of iso-PhABA with PYL10 was determined and elucidated successfully, revealing that (+)-iso-PhABA was better coordinated in the same binding pocket compared to (+)-ABA. Moreover, the detailed interaction network of iso-PhABA/PYL10 was disclosed and involves hydrogen bonds and multiple hydrophobic interactions that provide a robust framework for the design of novel ABA receptor agonists/antagonists.
In plants, biosynthesized ABA undergoes two important physiological processes of signal transduction and metabolism simultaneously. In this study, we described a class of ABA receptor agonist/antagonist switching probes APAn, which can regulate the agonistic activity or antagonistic activity according to the length of a 6′-alkoxyl chain. From APA1 to APA6, with the extension of the alkoxyl chain, it showed a gradually increased receptor-binding potential and decreased HAB1 inhibition activity. Theoretical analysis based on molecular docking and molecular dynamics simulation revealed that some factors outside the ligandbinding pocket in receptors could also affect the binding of the ligand to the receptor, for example, the van der Waals interaction between the alkyl chain in APAn and the 3′-tunnel of ABA receptors made it bind more tightly than iso-PhABA. This enhanced binding made it an antagonist rather than a weakened agonist.
2′,3′-iso-Benzoabscisic acid (iso-PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso-PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2′,3′-iso-pyridoabscisic acid (iso-PyABA) and 2′,3′-iso-franoabscisic acid (iso-FrABA), displayed good bioactivities that closed to iso-PhABA and natural (+)-ABA. Some others, for instance, substituted-iso-PhABA, exhibited certain selectivity to different physiological process when compared to iso-PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.