Meiotic recombination is initiated from the formation of DNA double-strand breaks (DSBs). In Arabidopsis, several proteins, such as AtPRD1, AtPRD2, AtPRD3, AtDFO and topoisomerase (Topo) VI-like complex, have been identified as playing important roles in DSB formation. Topo VI-like complex in Arabidopsis may consist of subunit A (Topo VIA: AtSPO11-1 and AtSPO11-2) and subunit B (Topo VIB: MTOPVIB). Little is known about their roles in Arabidopsis DSB formation. Here, we report on the characterization of the MTOPVIB gene using the Arabidopsis mutant alleles mtopVIB-2 and mtopVIB-3, which were defective in DSB formation. mtopVIB-3 exhibited abortion in embryo sac and pollen development, leading to a significant reduction in fertility. The mtopVIB mutations affected the homologous chromosome synapsis and recombination. MTOPVIB could interact with Topo VIA proteins AtSPO11-1 and AtSPO11-2. AtPRD1 interacted directly with Topo VI–like proteins. AtPRD1 also could interact with AtPRD3 and AtDFO. The results indicated that AtPRD1 may act as a bridge protein to interact with AtPRD3 and AtDFO, and interact directly with the Topo VI-like proteins MTOPVIB, AtSPO11-1 and AtSPO11-2 to take part in DSB formation in Arabidopsis.
In plants, biosynthesized ABA undergoes two important physiological processes of signal transduction and metabolism simultaneously. In this study, we described a class of ABA receptor agonist/antagonist switching probes APAn, which can regulate the agonistic activity or antagonistic activity according to the length of a 6′-alkoxyl chain. From APA1 to APA6, with the extension of the alkoxyl chain, it showed a gradually increased receptor-binding potential and decreased HAB1 inhibition activity. Theoretical analysis based on molecular docking and molecular dynamics simulation revealed that some factors outside the ligandbinding pocket in receptors could also affect the binding of the ligand to the receptor, for example, the van der Waals interaction between the alkyl chain in APAn and the 3′-tunnel of ABA receptors made it bind more tightly than iso-PhABA. This enhanced binding made it an antagonist rather than a weakened agonist.
Organ size is an important agronomic trait. Small peptides function in various stages of plant growth, but their regulatory mechanisms in organ growth remain poorly understood.Here, we characterize a novel small peptide, AtZSP1, which positively regulates organ size in Arabidopsis. Loss-of-function mutant atzsp1-1 exhibited small organs, whereas AtZSP1 overexpression plants (p35S:AtZSP1#1) produced larger organs. Differentially expressed genes in the shoots of atzsp1-1 and p35S:AtZSP1#1 were enriched in the cytokinin pathway. Further analysis on shoots of atzsp1-1 showed that endogenous cytokinin levels were significantly reduced, consistent with reduced expression of the cytokinin response genes ARR5/6/7 and a decrease in pARR5:GUS activity. By contrast, cytokinin levels were elevated in p35S: AtZSP1#1. These results indicate that AtZSP1 affects shoot size via changes in cytokinin levels.AtZSP1 is ubiquitously expressed and encodes a 57-amino acid endomembrane-associated protein that is highly conserved among plant species. AtZSP1 interacts with ROCK1 at the endomembrane. Genetic analysis confirmed that the small organs and low cytokinin levels in atzsp1-1 shoots are partially suppressed by the rock1-4 mutation, suggesting that AtZSP1 may function in a common pathway with ROCK1 to antagonistically regulate organ growth.Our study identified an unknown small peptide, AtZSP1, and defined its function in regulating organ size in Arabidopsis.
Five analogues of iso-PhABA (20) developed earlier by our research group were designed and synthesized. The bioassay results show that the number and position of methyl groups along with the substitution of hydrogen atoms of the methyl group have a great influence on the activity. Compared with iso-PhABA, the inhibitory activity of diMe-PhABA (21) on seed germination and rice seedling growth decreased slightly; however, it significantly reduced the capability of inhibiting wheat embryo germination. Both 3′-deMe-iso-PhABA ( 22) and 2′-deMe-PhABA (23) exhibited weak inhibitory activities, and 11′methoxy iso-PhABA (24a/24b) was much more efficient than its isomer 24c/24d in all bioassays. These results reveal the preservation of quaternary carbon at the 2′ or 3′ position is necessary to maintain its ABA-like biological activity, and demethylation at the 3′ position has a more significant effect. The selectivity of these compounds to different physiological processes makes them available as selective probes for different ABA receptors.
Restriction of pollen germination before the pollen grain is pollinated to stigma is essential for successful fertilization in angiosperms. However, the mechanisms underlying the process remain poorly understood. Here, we report functional characterization of the MAPKKK kinases, MAP3Kε1 and MAP3Kε2, involve in control of pollen germination in Arabidopsis. The two genes were expressed in different tissues with higher expression levels in the tricellular pollen grains. The map3kε1 map3kε2 double mutation caused abnormal callose accumulation, increasing level of JA and precocious pollen germination, resulting in significantly reduced seed set. Furthermore, the map3kε1 map3kε2 double mutations obviously upregulated the expression levels of genes in JA biosynthesis and signaling. The MAP3Kε1/2 interacted with MOB1A/1B which shared homology with the core components of Hippo singling pathway in yeast. The Arabidopsis mob1a mob1b mutant also exhibited a similar phenotype of precocious pollen germination to that in map3kε1 map3kε2 mutants. Taken together, these results suggested that the MAP3Kεs interacted with MOB1s and played important role in restriction of the precocious pollen germination, possibly through crosstalk with JA signaling and influencing callose accumulation in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.