BackgroundThere is increasing evidence suggesting that Bisphenol A (BPA), one of the highest volume chemicals produced worldwide, can interfere with the body’s natural weight control mechanisms to promote obesity. However, epidemiological studies for this are limited, especially for children.MethodsA cross-sectional study was conducted to investigate the association between BPA exposure and body mass index (BMI) in school children. Three primary and three middle schools were randomly selected from 26 primary and 30 middle candidate schools in Changning District of Shanghai City in China. According to the BMI-based criteria by age and sex for screening of overweight or obese children, we randomly chose 20 obese, 10 overweight, and 30 normal weight children aged 8-15 years of age from each selected school. First morning urine was collected and total urine BPA concentrations were determined by ultra-performance liquid chromatography tandem mass spectrometry. Multiple linear regression analysis was conducted to examine the association of urine BPA concentrations and daily intake estimates with BMI.ResultsBPA was detected in 84.9% of urine samples with a geometric mean of 0.45 ng/mL. The daily intake estimates ranged from 0.03 μg/day to 1.96 μg/day with a geometric mean of 0.37 μg/day. The average urine BPA concentrations and daily intake estimates were similar for boys and girls, but significantly higher in older children than younger ones, and showed an increasing trend with BMI. Multiple linear regression analyses showed that urine BPA concentrations were significantly associated with increasing BMI values in all subjects after adjustment for age and sex and the results were similar before and after corrected by urine specific gravity. When stratified by age or sex, the associations remained significant in females and in those 8-11 years of age before corrected by specific gravity. Similar results were shown for the association between BMI and daily intake estimates.ConclusionsThere is a possibility that BPA exposure increases BMI in school children. Given the cross-sectional nature of this study, longitudinal studies are warranted to confirm BPA exposure as a contributor to increased BMI in children.
BackgroundLab studies have suggested that ubiquitous phthalate exposures are related to obesity, but relevant epidemiological studies are scarce, especially for children.ObjectiveTo investigate the association of phthalate exposures with body mass index (BMI) and waist circumference (WC) in Chinese school children.MethodsA cross-sectional study was conducted in three primary and three middle schools randomly selected from Changning District of Shanghai City of China in 2011–2012. According to the physical examination data in October, 2011, 124 normal weight, 53 overweight, and 82 obese students 8–15 years of age were randomly chosen from these schools on the basis of BMI-based age- and sex-specific criterion. First morning urine was collected in January, 2012, and fourteen urine phthalate metabolites (free plus conjugated) were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Multiple linear regression was used to explore the associations between naturally log-transformed urine phthalate metabolites and BMI or WC.ResultsThe urine specific gravity-corrected concentrations of nine urine phthalate metabolites and five molar sums were positively associated with BMI or WC in Chinese school children after adjustment for age and sex. However, when other urine phthalate metabolites were included in the models together with age and sex as covariables, most of these significant associations disappeared except for mono (2-ethylhexyl) phthalate (MEHP) and monoethyl phthalate (MEP). Additionally, some associations showed sex- or age-specific differences.ConclusionsSome phthalate exposures were associated with BMI or WC in Chinese school children. Given the cross-sectional nature of this study and lack of some important obesity-related covariables, further studies are needed to confirm the associations.
A variety of antibiotics have been found in aquatic environments, but antibiotics in drinking water and their contribution to antibiotic exposure in human are not well-explored. For this, representative drinking water samples and 530 urine samples from schoolchildren were selected in Shanghai, and 21 common antibiotics (five macrolides, two β-lactams, three tetracyclines, four fluoquinolones, four sulfonamides, and three phenicols) were measured in water samples and urines by isotope dilution two-dimensional ultraperformance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Drinking water included 46 terminal tap water samples from different spots in the distribution system of the city, 45 bottled water samples from 14 common brands, and eight barreled water samples of different brands. Of 21 antibiotics, only florfenicol and thiamphenicol were found in tap water, with the median concentrations of 0.0089 ng/mL and 0.0064 ng/mL, respectively; only florfenicol was found in three bottled water samples from a same brand, with the concentrations ranging from 0.00060 to 0.0010 ng/mL; no antibiotics were found in barreled water. In contrast, besides florfenicol and thiamphenicol, an additional 17 antibiotics were detected in urine samples, and the total daily exposure doses and detection frequencies of florfenicol and thiamphenicol based on urine samples were significantly and substantially higher than their predicted daily exposure doses and detection frequencies from drinking water by Monte Carlo Simulation. These data indicated that drinking water was contaminated by some antibiotics in Shanghai, but played a limited role in antibiotic exposure of children.
To explore the antibiotic body burden of Chinese school children, total urinary concentrations (free and conjugated) of 18 representative antibiotics (5 macrolides, 2 β-lactams, 3 tetracyclines, 4 quinolones, and 4 sulfonamides) were measured by ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry among 1064 school students recruited from 3 economically and geographically distinct areas in east China in 2013. All 18 antibiotics were detected in urine samples with the detection frequencies ranging from 0.4 to 19.6%. The antibiotics were detected in 58.3% of urine samples overall, and this detection frequency reached at 74.4% in one study site. Of them, 47.8% of the urine samples had a sum of mass concentration of all antibiotics between 0.1 (minimum) and 20.0 ng/mL, and 8 antibiotics had their concentrations of above 1000 ng/mL in some urine samples. Three veterinary antibiotics, 4 human antibiotics, and 11 human/veterinary antibiotics were found overall in 6.3, 19.9, and 49.4% of urine samples, respectively. The detection frequencies and concentration levels of antibiotics in urine samples differed by study areas. Concerning mixed exposures, a total of 137 combinations of antibiotics and 20 combinations of antibiotic categories were found overall. Two or more antibiotics or categories were concurrently detected in more than 20% of urine samples. On the basis of a usage analysis, contaminated food or environment might be relevant exposure sources for tetracyclines, quinolones, and sulfonamides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.