Short-term traffic flow prediction is an important component of intelligent transportation systems, which can support traffic trip planning and traffic management. Although existing predicting methods have been applied in the field of traffic flow prediction, they cannot capture the complex multifeatures of traffic flows resulting in unsatisfactory short-term traffic flow prediction results. In this paper, a multifeature fusion model based on deep learning methods is proposed, which consists of three modules, namely, a CNN-Bidirectional GRU module with an attention mechanism (CNN-BiGRU-attention) and two Bidirectional GRU modules with an attention mechanism (BiGRU-attention). The CNN-BiGRU-attention module is used to extract local trend features and long-term dependent features of the traffic flow, and the two BiGRU-attention modules are used to extract daily and weekly periodic features of the traffic flow. Moreover, a feature fusion layer in the model is used to fuse the features extracted by each module. And then, the number of neurons in the model, the loss function, and other parameters such as the optimization algorithm are discussed and set up through simulation experiments. Finally, the multifeature fusion model is trained and tested based on the training and test sets from the data collected from the field. And the results indicate that the proposed model can better achieve traffic flow prediction and has good robustness. Furthermore, the multifeature fusion model is compared and analyzed against the baseline models with the same dataset, and the experimental results show that the multifeature fusion model has superior predictive performance compared to the baseline models.
Shared electric vehicles (SEVs) are becoming a new way for urban residents to travel because of their environmental protection, energy saving, and sustainable development. However, at present, the operation mode of shared electric vehicles has the problem that the vehicle cannot be utilized efficiently. For this reason, this paper studied the mode of SEVs with ride-sharing (MSEVRS) and SEVs routing optimization under this mode. Firstly, the operation principle of MSEVRS is presented, which includes the collection of user demand information and SEVs information and the routing optimization of SEVs, both of which are completed by the user and SEVs management center. Secondly, the routing optimization model of SEVs with ride-sharing is proposed, in which the SEVs operation cost, user time cost, user rental cost, and user ride-sharing bonus are taken into account. And the genetic algorithm is designed to solve the model. Finally, a case study is carried out to illustrate the effectiveness of the proposed model. The results show that the proposed routing optimization model achieves the optimal SEVs route, realizes the MSEVRS, and improves the utilization rate of SEVs. Compared with the current SEVs mode (CSEVM), the MSEVRS reduces the number of vehicles, user rental cost, the total cost of users, and the total cost of user and company of SEVs. And the total distance is reduced, which means saving energy. Moreover, it shows that MSEVRS obtains a better cost performance and service for users and has a better application prospect.
To alleviate the queue spillovers at intersections of urban roads during rush hours, a solution to the cross-spill problem based on vehicle networking technologies is proposed. This involves using connected vehicle technology, to realize the interactive information on vehicle and intersection signal control. The maximum control distance between intersections is determined by how vehicles are controlled and would travel in that connected environment. A method of calculating overflow tendency towards intersection queuing is also proposed, based on the maximum phase control distance. By this method, the intersection overflow is identified, and then the signal phases are re-optimized according to the requirements of different phases. Finally, overflow prevention control was also performed in this study. The VISSIM simulation results show that the method can better prevent the overflow of queues at intersections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.