Short-term traffic flow prediction is an important component of intelligent transportation systems, which can support traffic trip planning and traffic management. Although existing predicting methods have been applied in the field of traffic flow prediction, they cannot capture the complex multifeatures of traffic flows resulting in unsatisfactory short-term traffic flow prediction results. In this paper, a multifeature fusion model based on deep learning methods is proposed, which consists of three modules, namely, a CNN-Bidirectional GRU module with an attention mechanism (CNN-BiGRU-attention) and two Bidirectional GRU modules with an attention mechanism (BiGRU-attention). The CNN-BiGRU-attention module is used to extract local trend features and long-term dependent features of the traffic flow, and the two BiGRU-attention modules are used to extract daily and weekly periodic features of the traffic flow. Moreover, a feature fusion layer in the model is used to fuse the features extracted by each module. And then, the number of neurons in the model, the loss function, and other parameters such as the optimization algorithm are discussed and set up through simulation experiments. Finally, the multifeature fusion model is trained and tested based on the training and test sets from the data collected from the field. And the results indicate that the proposed model can better achieve traffic flow prediction and has good robustness. Furthermore, the multifeature fusion model is compared and analyzed against the baseline models with the same dataset, and the experimental results show that the multifeature fusion model has superior predictive performance compared to the baseline models.
Short-term traffic flow prediction can provide a basis for traffic management and support for travelers to make decisions. Accurate short-term traffic flow prediction also provides necessary conditions for the sustainable development of the traffic environment. Although the application of deep learning methods for traffic flow prediction has achieved good accuracy, the problem of combining multiple deep learning methods to improve the prediction accuracy of a single method still has a margin for in-depth research. In this article, a combined deep learning prediction (CDLP) model including two paralleled single deep learning models, CNN-LSTM-attention model and CNN-GRU-attention model, is established. In the model, a one-dimensional convolutional neural network (1DCNN) is used to extract traffic flow local trend features and RNN variants (LSTM and GRU) with attention mechanism are used to extract long temporal dependencies trend features. Moreover, a dynamic optimal weighted coefficient algorithm (DOWCA) is proposed to calculate the dynamic weights of CNN-LSTM-attention and CNN-GRU-attention with the goal of minimizing the sum of squared errors of the CDLP model. Then, the neuron number, loss function, optimization algorithm, and other parameters of the CDLP model are discussed and set through experiments. Finally, the training set and test set for the CDLP model are established through the processing of traffic flow data collected from the field. The CDLP model is trained and tested, and the prediction results of traffic flow are obtained and analyzed. It indicates that the CDLP model can fit the change trend of traffic flow very well and has better performance. Furthermore, under the same dataset, the results from the CDLP model are compared with baseline models. It is found that the CDLP model has higher prediction accuracy than baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.