The removal of heavy-metal ions from wastewater has drawn intense attention, because of their toxicity, bioaccumulation tendency, and persistency in nature. Adsorption is regarded as one of the most promising methods, because of its simplicity and efficiency. In the present work, we report the preparation of a novel EDTA-functionalized covalent organic framework (COF) for the removal of heavy-metal ions. First, a COF named TpPa-NO2 was reduced to TpPa-NH2 by using Na2S2O4 as a reductant, and then EDTA dianhydride was grafted onto TpPa-NH2 to obtain TpPa-NH2@EDTA through post-modification. Both the COF morphology and structure remained unchanged after post-modification. The TpPa-NH2@EDTA showed excellent performance in adsorbing different types of heavy-metal ions, such as soft Lewis acid (Ag+, Pd2+), hard Lewis acid (Fe3+, Cr3+), and borderline Lewis acid (Cu2+, Ni2+), and the removal efficiencies are all >85% within 5 min, because of the strong chelation effect of EDTA. The TpPa-NH2@EDTA also showed high adsorption ability in a pH ≥3 environment and have an adsorption capacity of >50 mg/g for the six representative heavy-metal ions. This work provides a new idea for the application of COF materials in the removal of heavy-metal ions from wastewater.
BackgroundElevated heavy metals and fasting plasma glucose (FPG) levels were both associated with increased risk of cardiovascular diseases. However, studies on the associations of heavy metals and essential elements with altered FPG and diabetes risk were limited or conflicting. The objective of this study was to evaluate the potential associations of heavy metals and essential trace elements with FPG and diabetes risk among general Chinese population.MethodsWe conducted a cross-sectional study to investigate the associations of urinary concentrations of 23 metals with FPG, impaired fasting glucose (IFG) and diabetes among 2242 community-based Chinese adults in Wuhan. We used the false discovery rate (FDR) method to correct for multiple hypothesis tests.ResultsAfter adjusting for potential confounders, urinary aluminum, titanium, cobalt, nickel, copper, zinc, selenium, rubidium, strontium, molybdenum, cadmium, antimony, barium, tungsten and lead were associated with altered FPG, IFG or diabetes risk (all P< 0.05); arsenic was only dose-dependently related to diabetes (P< 0.05). After additional adjustment for multiple testing, titanium, copper, zinc, selenium, rubidium, tungsten and lead were still significantly associated with one or more outcomes (all FDR-adjusted P< 0.05).ConclusionsOur results suggest that multiple metals in urine are associated with FPG, IFG or diabetes risk. Because the cross-sectional design precludes inferences about causality, further prospective studies are warranted to validate our findings.
Background:Smoking is a risk factor for many human diseases. DNA methylation has been related to smoking, but genome-wide methylation data for smoking in Chinese populations is limited.Objectives:We aimed to investigate epigenome-wide methylation in relation to smoking in a Chinese population.Methods:We measured the methylation levels at > 485,000 CpG sites (CpGs) in DNA from leukocytes using a methylation array and conducted a genome-wide meta-analysis of DNA methylation and smoking in a total of 596 Chinese participants. We further evaluated the associations of smoking-related CpGs with internal polycyclic aromatic hydrocarbon (PAH) biomarkers and their correlations with the expression of corresponding genes.Results:We identified 318 CpGs whose methylation levels were associated with smoking at a genome-wide significance level (false discovery rate < 0.05), among which 161 CpGs annotated to 123 genes were not associated with smoking in recent studies of Europeans and African Americans. Of these smoking-related CpGs, methylation levels at 80 CpGs showed significant correlations with the expression of corresponding genes (including RUNX3, IL6R, PTAFR, ANKRD11, CEP135 and CDH23), and methylation at 15 CpGs was significantly associated with urinary 2-hydroxynaphthalene, the most representative internal monohydroxy-PAH biomarker for smoking.Conclusion:We identified DNA methylation markers associated with smoking in a Chinese population, including some markers that were also correlated with gene expression. Exposure to naphthalene, a byproduct of tobacco smoke, may contribute to smoking-related methylation.Citation:Zhu X, Li J, Deng S, Yu K, Liu X, Deng Q, Sun H, Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. 2016. Genome-wide analysis of DNA methylation and cigarette smoking in Chinese. Environ Health Perspect 124:966–973; http://dx.doi.org/10.1289/ehp.1509834
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.