The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.