Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
IntroductionStudies on intracranial aneurysms (IAs) using animal models have evolved for decades. This study aimed to analyze major contributors and trends in IA-related animal research using bibliometric analysis.MethodsIA-related animal studies were retrieved from the Web of Science database. Microsoft Excel 2010, GraphPad Prism 6, VOSviewer, and CiteSpace were used to collect and analyze the characteristics of this field.ResultsA total of 273 publications were retrieved. All publications were published between 1976 and 2021, and the peak publication year is 2019. Rat model were used in most of the publications, followed by mice and rabbits. Japan (35.5%), the United States (30.0%), and China (20.1%) were the top three most prolific countries. Although China ranks third in the number of publications, it still lacks high-quality articles and influential institutions. Stroke was the most prolific journal that accepted publications related to IA research using animal models. Circulation has the highest impact factor with IA-related animal studies. Hashimoto N contributed the largest number of articles. Meng hui journal published the first and second highest cited publications. The keywords “subarachnoid hemorrhage,” “macrophage,” “rupture,” “mice,” “elastase,” “gene,” “protein,” “proliferation,” and “risk factors” might be a new trend for studying IA-related animal research.ConclusionsJapan and the Unites States contributed the most to IA–related animal studies, in terms of both researchers and institutions. Although China ranks third in terms of the number of publications, it should strengthen the quality of its publications. Researchers should pay attention to the latest progress of Stroke, Journal of Neurosurgery, Neurosurgery, and Circulation for their high-quality IA-related animal studies. Using animal IA models, especially mice, to investigate the molecular mechanisms of IA may be the frontier topic now and in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.