This paper proposes a method that can measure high-contrast surfaces in real-time without changing camera exposures. We propose to use 180-degree phase-shifted (or inverted) fringe patterns to complement regular fringe patterns. If not all of the regular patterns are saturated, inverted fringe patterns are used in lieu of original saturated patterns for phase retrieval, and if all of the regular fringe patterns are saturated, both the original and inverted fringe patterns are all used for phase computation to reduce phase error. Experimental results demonstrate that three-dimensional (3D) shape measurement can be achieved in real time by adopting the proposed high dynamic range method.
Six of the ten leading causes of death in the United States, including cancer, diabetes, and heart disease, can be directly linked to diet. Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many of the above chronic diseases. Measuring accurate dietary intake is considered to be an open research problem in the nutrition and health fields. In this paper we compare two techniques to estimating food portion size from images of food. The techniques are based on 3D geometric models and depth images. An expectation-maximization based technique is developed to detect the reference plane in depth images, which is essential for portion size estimation using depth images. Our experimental results indicate that volume estimation based on geometric model is more accurate for objects with well-defined 3D shapes compared to estimation using depth images.
Using 1-bit binary patterns for three-dimensional (3D) shape measurement has been demonstrated as being advantageous over using 8-bit sinusoidal patterns in terms of achievable speeds. However, the phase quality generated by binary pattern(s) typically are not high if only a small number of phase-shifted patterns are used. This paper proposes a method to improve the phase quality by representing each pattern with the difference of two binary patterns: the first binary pattern is generated by triangular pulse width modulation (TPWM) technique, and the second being π shifted from the first pattern that is also generated by TPWM technique. The phase is retrieved by applying a three-step phase-shifting algorithm to the difference patterns. Through optimizing the modulation frequency of the triangular carrier signal, we demonstrate that a high-quality phase can be generated for a wide range of fringe periods (e.g., from 18 to 1140 pixels) with only six binary patterns. Since only 1-bit binary patterns are required for 3D shape measurement, this paper will present a real-time 3D shape measurement system that can achieve 30 Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.