The resilience of cities has received worldwide attention. An accurate and rapid assessment of seismic damage, economic loss, and post-event repair time can provide an important reference for emergency rescue and post-earthquake recovery. Based on city-scale nonlinear time-history analysis (THA) and regional seismic loss prediction, a real-time city-scale time-history analysis method is proposed in this work. In this method, the actual ground motion records obtained from seismic stations are input into the building models of the earthquake-stricken area, and the nonlinear time-history analysis of these models is subsequently performed using a high-performance computing platform. The seismic damage to the buildings in the target region subjected to this earthquake is evaluated according to the analysis results. The economic loss and repair time of the earthquake-stricken areas are calculated using the engineering demand parameters obtained from the time-history analysis. A program named, "Real-time Earthquake Damage Assessment using City-scale Time-history analysis" ("RED-ACT" for short) was developed to automatically implement the above workflow. The method proposed in this work has been applied in many earthquake events, and provides a useful reference for scientific decision making for earthquake disaster relief, which is of great significance to enhancing the resilience of earthquake-stricken areas.
Computational fluid dynamics (CFD) simulation is a core component of wind engineering assessment for urban planning and architecture. CFD simulations require clean and low-complexity models. Existing modeling methods rely on static data from geographic information systems along with manual efforts. They are extraordinarily time-consuming and have difficulties accurately incorporating the up-to-date information of a target area into the flow model. This paper proposes an automated simulation framework with superior modeling efficiency and accuracy. The framework adopts aerial point clouds and an integrated two-dimensional and three-dimensional (3D) deep learning technique, with four operational modules: data acquisition and preprocessing, point cloud segmentation based on deep learning, geometric 3D reconstruction, and CFD simulation. The advantages of the framework are demonstrated through a case study of a local area in Shenzhen, China.
Monitoring the deformation or displacement response of buildings is critical for structural safety. Recently, the development of computer vision has led to extensive research on the application of vision-based measurements in the structural monitoring. This enables the use of urban surveillance video cameras, which are widely installed and can produce numerous images and videos of urban scenes to measure the structural displacement. However, the structural displacement measurement may be inaccurate owing to the limited
The open-source finite element software, OpenSees, is widely used in the earthquake engineering community. However, the shell elements and explicit algorithm in OpenSees still require further improvements. Therefore, in this work, a triangular shell element, NLDKGT, and an explicit algorithm are proposed and implemented in OpenSees. Specifically, based on the generalized conforming theory and the updated Lagrangian formulation, the proposed NLDKGT element is suitable for problems with complicated boundary conditions and strong nonlinearity. The accuracy and reliability of the NLDKGT element are validated through typical cases. Furthermore, by adopting the leapfrog integration method, an explicit algorithm in OpenSees and a modal damping model are developed. Finally, the stability and efficiency of the proposed shell element and explicit algorithm are validated through the nonlinear time-history analysis of a highrise building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.