Acute lymphoblastic leukemia (ALL), which involves the blood and bone marrow, is the most common type of cancer in children younger than 5 years of age. Previous studies have investigated the effects of centipedegrass extract (CGE), which is mainly composed of maysin and its derivatives, and have demonstrated that it has various biological activities, including antioxidant and anti‑inflammatory activities, pancreatic lipase inhibitory activity, anti-adipogenic activity and insecticidal activity. To the best of our knowledge, this study is the first to investigate the anticancer effects of CGE in ALL cell lines and to elucidate the mechanisms underlying these effects. Cell viability was measured by thiazolyl blue tetrazolium blue (MTT) assay. Apoptosis, cell cycle progression and mitochondrial membrane potential (∆Ψm) were determined by flow cytometry. The effects of CGE on the phosphatidylinositol 3‑kinase (PI3K)/Akt pathway and mitogen‑activated protein kinases (MAPKs) were assessed by immunoblotting. PI3K, MAPK and caspase inhibitors were used to further confirm the molecular mechanisms involved. Our results clearly demonstrated that the proliferation of the ALL cells was significantly inhibited by CGE in a dose‑dependent manner. Apoptosis was accompanied by the induction of significant G1 cell cycle arrest. The resulting alteration of the ∆Ψm increased the activity of caspase‑3/7. The induction of apoptosis was enhanced by the combined treatment of CGE with a PI3K inhibitor or an extracellular signal-regulated kinase (ERK) inhibitor, whereas the CGE‑induced apoptosis was inhibited in the presence of caspase inhibitors, such as z‑VAD‑fmk and z‑IETD‑fmk. Furthermore, CGE inhibited PI3K activity by decreasing the levels of phosphorylated (p‑)Akt, p‑BAD, and Bcl‑2 together with the levels of MAPKs, including p‑ERK and p‑JNK, but demonstrated no effects on p38 MAPK. Thus, our data suggest that CGE may be a novel natural compound with potential for use as an antitumor agent in ALL.
Kenalog is a synthetic glucocorticoid drug used to treat various cancers including ocular and choroidal melanoma. However, the drug achieves rarely sustainable results for patients. To overcome this difficulty, the structure of Kenalog was altered by ionizing radiation (IR) to develop a more effective anticancer agent for treatment of various skin cancers. The anticancer effect of modified Kenalog (Kenalog-IR) was assessed in melanoma cancer cells in vitro. The assessment of mitochondrial functions by MTT assay revealed significant inhibition of melanoma cancer cell viability by Kenalog-IR compared to Kenalog. Moreover, Kenalog-IR-induced apoptotic cell death was associated with the intrinsic mitochondrial pathway by triggering the release of intrinsic apoptosis molecules through activation of caspase-related molecules in concentration and time-dependent manners. Furthermore, it was observed that Kenalog-IR-induced apoptosis was associated with the generation of reactive oxygen species (ROS) with increased G2/M cell cycle arrest. Collectively, Kenalog-IR may be a potential suppressor of skin-related cancer in particular melanoma cancer.Abbreviations: IR, ionizing radiation; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ROS, reactive oxygen species; IMD, incrementally modified drugs
Osteoclasts, derived from hematopoietic stem cells, are specialized macrophages and have a homeostatic role in skeletal modeling and remodeling with bone-forming osteoblasts. However, excessive osteoclast activity induces bone diseases, including osteoporosis, periodontitis and rheumatoid arthritis. Natural substances have received attention as therapeutic drugs in human diseases. In the current study, cells isolated from mouse bone marrow, and a mouse model, were used to determine the effect of centipedegrass extract (CGE) on osteoclasts. Multiple concentrations of CGE were administered to bone marrow cells for 24‑72 hours and, for the in vivo study, mice were treated with CGE for 8 days. The effects of CGE on transcription and translation of osteoclast-associated molecules were then determined using reverse transcription-polymerase chain reaction and immunoblotting, respectively. In the present study it was shown that CGE extracted from Eremochloa ophiuroides (centipedegrass) inhibited receptor activator of nuclear factor κ‑B ligand (RANKL)‑mediated osteoclast differentiation in bone marrow macrophages, without cytotoxicity, in a dose‑dependent manner. CGE decreased the expression levels of osteoclast‑specific genes, including matrix metalloproteinase‑9, osteoclast‑associated immunoglobulin‑like receptor and cathepsin K, however, CGE had no inhibitory effect on the expression levels of mitogen‑activated protein kinases, nuclear factor‑κB and Akt. Furthermore, the protein and RNA levels of RANKL‑induced c‑Fos and nuclear factor of activated T-cell cytoplasmic 1 were suppressed by CGE. These results indicated that CGE may serve as a useful drug in the prevention of bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.