Goal-oriented dialogue in complex domains is an extremely challenging problem and there are relatively few datasets. This task provided two new resources that presented different challenges: one was focused but small, while the other was large but diverse. We also considered several new variations on the next utterance selection problem: (1) increasing the number of candidates, (2) including paraphrases, and (3) not including a correct option in the candidate set. Twenty teams participated, developing a range of neural network models, including some that successfully incorporated external data to boost performance. Both datasets have been publicly released, enabling future work to build on these results, working towards robust goal-oriented dialogue systems.
This paper introduces the Ninth Dialog System Technology Challenge (DSTC-9). This edition of the DSTC focuses on applying end-to-end dialog technologies for four distinct tasks in dialog systems, namely, 1. Task-oriented dialog Modeling with unstructured knowledge access, 2. Multi-domain task-oriented dialog, 3. Interactive evaluation of dialog, and 4. Situated interactive multi-modal dialog. This paper describes the task definition, provided datasets, baselines and evaluation set-up for each track. We also summarize the results of the submitted systems to highlight the overall trends of the state-of-the-art technologies for the tasks.
Explaining neural network models is important for increasing their trustworthiness in realworld applications. Most existing methods generate post-hoc explanations for neural network models by identifying individual feature attributions or detecting interactions between adjacent features. However, for models with text pairs as inputs (e.g., paraphrase identification), existing methods are not sufficient to capture feature interactions between two texts and their simple extension of computing all word-pair interactions between two texts is computationally inefficient. In this work, we propose the Group Mask (GMASK) method to implicitly detect word correlations by grouping correlated words from the input text pair together and measure their contribution to the corresponding NLP tasks as a whole. The proposed method is evaluated with two different model architectures (decomposable attention model and BERT) across four datasets, including natural language inference and paraphrase identification tasks. Experiments show the effectiveness of GMASK in providing faithful explanations to these models 1 .
Neural abstractive summarization models have drastically improved in the recent years. However, the summaries generated by these models generally suffer from issues such as: not capturing the critical facts in source documents, and containing facts that are inconsistent with the source documents. In this work, we present a general framework to train abstractive summarization models to alleviate such issues. We first train a sequence-to-sequence model to summarize documents, and then further train this model in a Reinforcement Learning setting with question-answering based rewards. We evaluate the summaries generated by the this framework using multiple automatic measures and human judgements. The experimental results show that the question-answering rewards can be used as a general framework to improve neural abstractive summarization. Particularly, the results from human evaluations show that the summaries generated by our approach are preferred over 30% of the time over the summaries generated by general abstractive summarization models.Original Document/Dialog Charlee: I'm in class. Theatre in Portuguese lol. Curtis: Realllly? Charlee: Yes. One of my subjects at the university that I attend is portuguese theatre. Charlee: We are preparing for a performance. Curtis: What performance is this? Are you devising it? Charlee: A polish one translated into portuguese. Curtis: Thats quite cool. Who is the writer? Charlee: Mrożek. Ground truth (human) summaryCharlee is attending Portuguese theater as a subject at university. He and other students are preparing a play by Mrożek translated into Portuguese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.