Despite the continuous progress in the research and development of Ti 3 C 2 T x (MXene) electrodes for high-power batteries and supercapacitor applications, the role of the anions in the electrochemical energy storage and their ability to intercalate between the MXene sheets upon application of positive voltage have not been clarified. A decade after the discovery of MXenes, the information about the possibility of anion insertion into the restacked MXene electrode is still being questioned. Since the positive potential stability range in diluted aqueous electrolytes is severely limited by anodic oxidation of the Ti, the possibility of anion insertion was evaluated in concentrated aqueous electrolyte solutions and aprotic electrolytes as well. To address this issue, we have conducted in situ gravimetric electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurements in highly concentrated LiCl and LiBr electrolytes, which enable a significant extension of the operation range of the MXene electrodes toward positive potentials. Also, halogens are among the smallest anions and should be easier to intercalate between MXene layers, in comparison to multiatomic anions. On the basis of mass change variations in the positive voltage range and complementary density functional theory calculations, it was demonstrated that insertion of anionic species into MXene, within the range of potentials of interest for capacitive energy storage, is not likely to occur. This can be explained by the strong negative charge on Ti 3 C 2 T x sheets terminated by functional groups.
In this work, a novel heterofunctional, bimodally-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host within a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized through a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate controllable sulfur loading and ca. 700 mAh g −1 (at 47%-wt S) reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio molecular dynamics characterize the interface between the C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM micrographs to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance. The goal of developing new and efficient renewable energy technologies from intermittent energy sources, such as solar and wind, necessitates the need for effective, economical, and safe energy storage.1-3 While batteries and supercapacitors have been considered the best options to address this issue, their progress is staggered by both challenging synthesis problems and a continually-developing understanding of their fundamental electrochemistry. 4 Currently, lithiumion batteries dominate the market for portable electronic devices; however, their cost and relatively low energy density prevents them from being used in electrical vehicle applications at this juncture. [4][5][6] Going beyond lithium-ion chemistry, lithium-sulfur and lithium-air are among the most promising battery technologies that can potentially meet the required specific energy target of about 1,000 Wh kg −1 needed to improve the viability of electrical vehicles. 5,7The appeal of a sulfur-based cathode lies in its high theoretical capacity that is about one order of magnitude higher than current metal oxide-based cathodes. Sulfur is also cheaper and more environmentally-friendly than today's commercial cathode materials. 7Low density and natural abundancy in the earth's crust imply that the use of elemental sulfur in the manufacture of lithium-sulfur (Li-S) batteries will be cost effective and demonstrate low environmental impact.8 Thus, Li-S batteries hold significant promise due to their high theoretical specific energy of 2,567 Wh kg −1 , 9 assuming the complete electroche...
Porous carbon microsheet anodes with Li-ion storage capacity exceeding the theoretical limit are for the first time derived from waste packing-peanuts. Crystallinity, surface area, and porosity of these 1 μm thick carbon sheets were tuned by varying the processing temperature. Anodes composed of the carbon sheets outperformed the electrochemical properties of commercial graphitic anode in Li-ion batteries. At a current density of 0.1 C, carbon microsheet anodes exhibited a specific capacity of 420 mAh/g, which is slightly higher than the theoretical capacity of graphite (372 mAh/g) in Li-ion half-cell configurations. At a higher rate of 1 C, carbon sheets retained 4-fold higher specific capacity (220 mAh/g) compared to those of commercial graphitic anode. After 100 charge-discharge cycles at current densities of 0.1 and 0.2 C, optimized carbon sheet anodes retained stable specific capacities of 460 and 370 mAh/g, respectively. Spectroscopic and microscopic investigations proved the structural integrity of these high-performance carbon anodes during numerous charge-discharge cycles. Considerably higher electrochemical performance of the porous carbon microsheets are endorsed to their disorderness that facilitate to store more Li-ions than the theoretical limit, and porous 2-D microstructure enabling fast solid-state Li-ion diffusion and superior interfacial kinetics. The work demonstrated here illustrates an inexpensive and environmentally benign method for the upcycling of packaging materials into functional carbon materials for electrochemical energy storage.
Fluorocarbon (CF) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g and 269 mAh g in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.
A two-dimensional electrode architecture of ∼25 nm sized Co nanoparticles chemically bonded to ∼100 nm thick amorphous porous carbon nanosheets (Co@PCNS) through interfacial Co-C bonds is reported for the first time. This unique 2D hybrid architecture incorporating multiple Li-ion storage mechanisms exhibited outstanding specific capacity, rate performance, and cycling stabilities compared to nanostructured CoO electrodes and Co-based composites reported earlier. A high discharge capacity of 900 mAh/g is achieved at a charge-discharge rate of 0.1C (50 mA/g). Even at high rates of 8C (4 A/g) and 16C (8 A/g), Co@PCNS demonstrated specific capacities of 620 and 510 mAh/g, respectively. Integrity of interfacial Co-C bonds, Co nanoparticles, and 90% of the initial capacity are preserved after 1000 charge-discharge cycles. Implementation of Co nanoparticles instead of CoO restricted LiO formation during the charge-discharge process. In situ formed Co-C bonds during the pyrolysis steps improve interfacial charge transfer, and eliminate particle agglomeration, identified as the key factors responsible for the exceptional electrochemical performance of Co@PCNS. Moreover, the nanoporous microstructure and 2D morphology of carbon nanosheets facilitate superior contact with the electrolyte solution and improved strain relaxation. This study summarizes design principles for fabricating high-performance transition-metal-based Li-ion battery hybrid anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.