Given the low risk of lymph node involvement, we recommend that endoscopic submucosal dissection be safely applied for early gastric signet ring cell carcinoma when tumor confined to mucosa, size ≤2 cm, and without lymphovascular invasion and ulceration.
BackgroundLymph node status is crucial to determining treatment for early gastric cancer (EGC). We aim to establish a nomogram to predict the possibility of lymph node metastasis (LNM) in EGC patients.MethodsMedical records of 952 EGC patients with curative resection, from 2002 to 2014, were retrospectively retrieved. Univariate and multivariate analysis were performed to examine risk factors associated with LNM. A nomogram for predicting LNM was established and internally validated.ResultsFive variables significantly associated with LNM were included in our model, these are sex (Odd ratio [OR] = 1.961, 95% confidence index [CI], 1.334 to 2.883; P = 0.001), depth of tumor (OR = 2.875, 95% CI, 1.872 to 4.414; P = 0.000), tumor size (OR = 1.986, 95% CI, 1.265 to 3.118; P = 0.003), histology type (OR = 2.926, 95% CI, 1.854 to 4.617; P = 0.000) and lymphovascular invasion (OR = 4.967, 95% CI, 2.996 to 8.235; P = 0.000). The discrimination of the prediction model was 0.786.ConclusionsA nomogram for predicting lymph node metastasis in patients with early gastric cancer was successfully established, which was superior to the absolute endoscopic submucosal dissection (ESD) indication in terms of the clinical performance.
Treatment algorithm has not been established for early gastric cancer with signet ring cell carcinoma (SRC), which has a reported low rate of lymph node metastasis (LNM) similar to differentiated cancer. A cohort of 256 patients with early gastric SRC at our center between January 2002 and December 2015 were retrospectively reviewed. Multivariate logistic regression analysis was used to determine the independent factors of LNM. A nomogram for predicting LNM was constructed and internally validated. Additional external validation was performed using the database from Cancer Institute Ariake Hospital in Tokyo (n = 1273). Clinical performance of the model was assessed by decision analysis of curve. The overall LNM incidence was 12.9% (33/256). The multivariate logistic model identified sex, tumor size, and LVI as covariates associated with LNM. Subsequently, a nomogram consisted of sex, tumor size, and depth of invasion was established. The model showed qualified discrimination ability both in internal validation (area under curve, 0.801; 95% confidence interval [CI], 0.729–0.873) and in external dataset (area under curve, 0.707; 95% CI, 0.657–0.758). Based on the nomogram, treatment algorithm for early gastric SRC was proposed to assist clinicians in making better decisions. We developed a nomogram predicting risk of LNM for early gastric SRC, which should be helpful for patient counseling and surgical decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.