Flexible electronics will form the basis of many next-generation technologies, such as wearable devices, biomedical sensors, the Internet of things, and more. However, most flexible devices can bear strains of less than 300% as a result of stretching. In this work, we demonstrate a simple and low-cost paper-based photodetector array featuring superior deformability using printable ZnO nanowires, carbon electrodes, and origami-based techniques. With a folded Miura structure, the paper photodetector array can be oriented in four different directions via tessellated parallelograms to provide the device with excellent omnidirectional light harvesting capabilities. Additionally, we demonstrate that the device can be repeatedly stretched (up to 1000% strain), bent (bending angle ±30°), and twisted (up to 360°) without degrading performance as a result of the paper folding technique, which enables the ZnO nanowire layers to remain rigid even as the device is deformed. The origami-based strategy described herein suggests avenues for the development of next-generation deformable optoelectronic applications.
Data warehousing is a popular technology, which aims at improving decision-making ability. As the result of an increasingly competitive environment, many companies are adopting a “bottom-up” approach to construct a data warehouse, since it is more likely to be on time and within budget. However, multiple independent data marts/cubes can easily cause problematic data inconsistency for anomalous update transactions, which leads to biased decision-making. This research focuses on solving the data inconsistency problem and proposing a temporal-based data consistency mechanism (TDCM) to maintain data consistency. From a relative time perspective, we use an active rule (standard ECA rule) to monitor the user query event and use a metadata approach to record related information. This both builds relationships between the different data cubes, and allows a user to define a VIT (valid interval temporal) threshold to identify the validity of interval that is a threshold to maintain data consistency. Moreover, we propose a consistency update method to update inconsistent data cubes, which can ensure all pieces of information are temporally consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.