With the synergistic effect of Pr and Zn, the material of Co3O4 mixed with Pr/Zn exhibits improved properties of anti-humidity and acetone sensitivity.
In this work, ZIF-8-derived Co3O4@ZnO microspheres were prepared by a liquid-phase concentration-controlled nucleation strategy. The results of the material characterization showed that Co3O4@ZnO microspheres were obtained, and the surface structure could be controlled with the concentration of the ligand. Compared with pure Co3O4 microspheres, the operating temperature of optimized Co3O4@ZnO microspheres increased by 90 °C after the gas-sensing test. The response to 50 ppm acetone of Co3O4@ZnO microspheres was 4.5 times higher than that of pure Co3O4, and the detection limit reached 0.5 ppm. Meanwhile, Co3O4@ZnO microspheres showed a shorter response-recovery time and better selectivity. The enhanced-sensing mechanism of the ZIF-8-derived Co3O4@ZnO microspheres was also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.