The results of this study suggest that only the ventral default mode subnetwork had age-related decline in functional connectivity and several reverse patterns of resting-state networks for network development. Understanding age-related network changes may provide solutions for the impact of population aging and diagnosis of neurodegenerative diseases.
This study investigated the bacterial inactivation/sterilization effects of a new atmospheric plasma source, which is a brush-shaped argon glow discharge created under 1 atm pressure. Such an atmospheric plasma brush requires extremely low power of less than 20 W to operate; and therefore is essentially a low-temperature discharge as confirmed by gas-phase temperature measurements. Two bacteria, Escherichia coli (E. coli) and Micrococcus luteus (M. luteus), seeded in various media were subjected to plasma treatment and their survivability was examined. It was found that such argon atmospheric plasma brush is very effective in destruction of the bacteria cells. With nutrient broth and standard methods agar as supporting media, a cell reduction in a level of 6 orders of magnitude was observed for E. coli within 3-4 min plasma treatment. A similar level of cell reduction was also observed for M. luteus in the two media with 2 or 3 min plasma treatment. The plasma treatment effects on the bacteria cell structures were also examined using scanning electron microscopy and the cell structure damages due to the plasma exposure were observed on both bacteria. The possible sterilization mechanism of the argon plasmas is also discussed in this article.
development of next generation of compact and flexible electronics. [1] The increase in computer usage and ever-growing dependence on cloud systems require better methods for dissipating heat away from electronic components. The important ingredients of thermal management are the thermal interface materials (TIMs). Various TIMs interface two uneven solid surfaces where air would be a poor conductor of heat, and aid in heat transfer from one medium into another. Two important classes of TIMs include curing and noncuring composites. Both of them consist of a base, i.e., matrix materials, and thermally conducting fillers. Commonly, the studies of new fillers for the use in TIMs start with the curing epoxybased composites owing to the relative ease of preparation and possibility of comparison with a wide range of other epoxy composites. Recent work on TIMs with carbon fillers have focused on curing composites, which dry to solid. [2][3][4][5][6][7] Curing TIMs are required for many applications, e.g. attachment of microwave devices, but do not cover all thermal management needs. Thermal management of computers requires specifically noncuring TIMs, which are commonly referred to as thermal pastes or thermal greases. They are soft pliable materials, which unlike cured epoxy-based composites, or phase change materials, remain soft once applied. This aids in avoiding crack formations in the bond line due to repeated thermal cycling of two connected materials with different temperature expansion coefficients. Noncuring TIMs also allow for easy reapplication, known as a TIM's reworkability property. Noncuring TIMs are typically cost efficient-an essential requirement for commercial applications. Various applications in electronics, noncuring grease-like (soft) TIMs are preferred. Examples of the applications include but are not limited to cooling of servers in large data centers [8] and personal devices which are the primary targets for these applications. Current commercially available TIMs perform in thermal conductivity range of 0.5-5 Wm −1 K −1 with combination of several fillers at high loading fractions. [9] State-of-the-art and next-generation electronic devices require thermal pastes with bulk thermal conductivity in the range of 20-25 Wm −1 K −1 . [10,11] This study focuses specifically on noncuring TIMs with graphene and few-layer graphene (FLG) fillers.Curing and noncuring TIMs consists of two main components-a polymer or oil material as its base and fillers, Development of next-generation thermal interface materials (TIMs) with high thermal conductivity is important for thermal management and packaging of electronic devices. The synthesis and thermal conductivity measurements of noncuring thermal paste, i.e., grease, based on mineral oil with a mixture of graphene and few-layer graphene flakes as the fillers, is reported. The graphene thermal paste exhibits a distinctive thermal percolation threshold with the thermal conductivity revealing a sublinear dependence on the filler loading. This behavior contrasts wi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.