Laminar burning velocities and Markstein lengths of 2,5-dimethylfuran (DMF)-air-N 2 /CO 2 premixed mixtures at the atmospheric pressure and initial temperature of 393 K over three different dilution ratios were obtained by using the outwardly propagating spherical flame and high-speed schlieren photograph system. Addition of diluent was used to simulate the effects of exhaust gas recirculation on the flame propagation. The results show that both unstretched flame propagation speed and laminar burning velocity decrease with the increase of dilution ratio. Markstein length is increased with the increase of dilution ratio, indicating that addition of diluent will improve the stability of the flame. The dilution effects of CO 2 as diluent on the flame propagation and the flame stability are stronger than those of N 2 as diluent. For a specific equivalence ratio, the laminar burning velocity shows a linear decreasing trend with the increase of dilution ratio. The ratio of the laminar burning velocities with and without diluent gas (the normalized laminar burning velocity) demonstrates good linear trend versus the dilution ratio, and a linear formula is developed to express this relationship based on experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.