Understanding the dynamic behavior of switchable surfaces is of paramount importance for the development of controllable and tailor-made surface materials. Herein, electrically switchable mixed self-assembled monolayers based on oligopeptides have been investigated in order to elucidate their conformational mechanism and structural requirements for the regulation of biomolecular interactions between proteins and ligands appended to the end of surface tethered oligopeptides. The interaction of the neutravidin protein to a surface appended biotin ligand was chosen as a model system. All the considerable experimental data, taken together with detailed computational work, support a switching mechanism in which biomolecular interactions are controlled by conformational changes between fully extended (“ON” state) and collapsed (“OFF” state) oligopeptide conformer structures. In the fully extended conformation, the biotin appended to the oligopeptide is largely free from steric factors allowing it to efficiently bind to the neutravidin from solution. While under a collapsed conformation, the ligand presented at the surface is partially embedded in the second component of the mixed SAM, and thus sterically shielded and inaccessible for neutravidin binding. Steric hindrances aroused from the neighboring surface-confined oligopeptide chains exert a great influence over the conformational behaviour of the oligopeptides, and as a consequence, over the switching efficiency. Our results also highlight the role of oligopeptide length in controlling binding switching efficiency. This study lays the foundation for designing and constructing dynamic surface materials with novel biological functions and capabilities, enabling their utilization in a wide variety of biological and medical applications.
In situ sum‐frequency‐generation spectroscopy is used for the first time to study changes in molecular orientations in charged biofunctionalized self‐assembled monolayers, in response to an applied electrical potential. The findings presented here unravel the mechanism by which charged biomolecules control biomolecular interactions, for example, protein binding affinities, and lay the foundation for future studies aiming to explore molecular conformational changes in response to electrical stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.