Two cyanate ester resins and a polycarbonate thermoplastic have been synthesized from vanillin. The bisphenol precursors were prepared by both an electrochemical route as well as by a McMurry coupling reaction. 1,2-bis(4-cyanato-3-methoxyphenyl)ethene (6) had a high melting point of 237 °C and did not cure completely under a standard cure protocol. In contrast, the reduced version, 1,2-bis(4-cyanato-3-methoxyphenyl)ethane (7) melted at 190 °C and underwent complete cure to form a thermoset material with T g = 202 °C. 7 showed thermal stability up to 335 °C and decomposed via formation of phenolics and isocyanic acid. A polycarbonate was then synthesized from the reduced bisphenol by a transesterification reaction with diphenylcarbonate. The polymer had M n = 3588, M w /M n = 1.9, and a T g of 86 °C. TGA/FTIR data suggested that the polycarbonate decomposed via formation of benzodioxolanes with concomitant elimination of methane. The results show that vanillin is a useful precursor to both thermosetting resins and thermoplastics without significant modification.
Renewable phenols derived from biomass sources often contain methoxy groups that alter the properties of derivative polymers. To evaluate the impact of o-methoxy groups on the performance characteristics of cyanate ester resins, three bisphenols derived from the renewable phenol creosol were deoxygenated by conversion to ditriflates followed by palladium-catalyzed elimination and hydrolysis of the methoxy groups. The deoxygenated bisphenols were then converted to the following cyanate ester resins: bis(4-cyanato-2-methylphenyl)methane (16), 4,4′-(ethane-1,1′-diyl)bis(1-cyanato-3-methylbenzene) (17), and 4,4′-(propane-1,1′-diyl)bis-(1-cyanato-3-methylbenzene) (18). The physical properties, cure chemistry, and thermal stability of these resins were evaluated and compared to those of cyanate esters derived from the oxygenated bisphenols. 16 and 18 had melting points 37 and >95°C lower, respectively, than the oxygenated versions, while 17 had a melting point 14°C higher. The T g 's of thermosets generated from the deoxygenated resins ranged from 267 to 283°C, up to 30°C higher than the oxygenated resins, while the onset of thermal degradation was 50−80°C higher. The deoxygenated resins also exhibited water uptakes up to 43% lower and wet T g s up to 37°C higher than the oxygenated resins. TGA-FTIR of thermoset networks derived from 16−18 revealed a different decomposition mechanism compared to the oxygenated resins. Instead of a low-temperature pathway that resulted in the evolution of phenolic compounds, 16−18 had significantly higher char yields and decomposed via evolution of small molecules including isocyanic acid, CH 4 , CO 2 , and NH 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.