This research aims to build a Mandarin named entity recognition (NER) module using transfer learning to facilitate damage information gathering and analysis in disaster management. The hybrid NER approach proposed in this research includes three modules: (1) data augmentation, which constructs a concise data set for disaster management; (2) reference model, which utilizes the bidirectional long short-term memory–conditional random field framework to implement NER; and (3) the augmented model built by integrating the first two modules via cross-domain transfer with disparate label sets. Through the combination of established rules and learned sentence patterns, the hybrid approach performs well in NER tasks for disaster management and recognizes unfamiliar words successfully. This research applied the proposed NER module to disaster management. In the application, we favorably handled the NER tasks of our related work and achieved our desired outcomes. Through proper transfer, the results of this work can be extended to other fields and consequently bring valuable advantages in diverse applications.
The potential effect of a typhoon track on the extent of damage makes the track a critical factor during the emergency response phase. Historical typhoon data may provide information for decision makers to anticipate the impact of an upcoming typhoon and develop prevention strategies to reduce the damage. In our preliminary work, we proposed a track similarity algorithm and implemented a real-time search engine for past typhoon events. However, the proposed algorithm was not discussed thoroughly in the preliminary work, and the great number of historical typhoon track records slowed down the similarity calculations. In addition, the tool did not feature the option of automatically importing upcoming typhoon track predictions. This research introduces the assumption of the recentness dominance principle (RDP), explores the details of the track similarity algorithm of the preliminary work, completes the discussion of parameter setting, and developed a method to improve the efficiency of the similarity calculation. In this research, we implemented the proposed advanced methodology by developing a new information display panel featuring the ability to auto-import forecast data. The results of this study provide decision makers and the public with a concise and handy search engine for searching similar historical typhoon records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.