P62, also called sequestosome1 (SQSTM1), is the selective cargo receptor for autophagy to degenerate misfolded proteins. It has also been found to assist and connect parkin in pink1/parkin mitophagy pathway. Previous studies showed that p62 was in association with neurodegenerative diseases, and one of the diseases pathogenesis is P62 induced autophagy and mitophagy dysfunction. Autophagy is an important process to eliminate misfolded proteins. Intracellular aggregation including α-synuclein, Huntingtin, tau protein and ß-amyloid (Aß) protein are the misfolded proteins found in PD, HD and AD, respectively. P62 induced autophagy failure significantly accelerates misfolded protein aggregation. Mitophagy is the special autophagy, functions as the selective scavenger towards the impaired mitochondria. Mitochondrial dysfunction was confirmed greatly contribute to the occurrence of neurodegenerative diseases. Through assistance and connection with parkin, P62 is vital for regulating mitophagy, thus, aberrant P62 could influence the balance of mitophagy, and further disturb mitochondrial quality control. Therefore, accumulation of misfolded proteins leads to the aberrant P62 expression, aberrant P62 influence the balance of mitophagy, forming a vicious circle afterwards. In this review, we summarize the observations on the function of P62 relevant to autophagy and mitophagy in neurodegenerative diseases, hoping to give some clear and objective opinions to further study.
Mitochondria are organelles responsible for vital cell functions. p53 is a transcription factor that regulates the DNA stability and cell growth normality. Recent studies revealed that p53 can influence mitochondrial function changing from normal condition to abnormal condition under different stress levels. In normal state, p53 can maintain mitochondrial respiration through transactivation of SCO2. When stress stimuli presents, SCO2 overexpresses and leads to ROS generation. ROS promotes p53 inducing MALM (Mieap-induced accumulation of lysosome-like organelles within mitochondria) to repair dysfunctional mitochondria and MIV (Mieap-induced vacuole) to accomplish damaged mitochondria degradation. If stress or damage is irreversible, p53 will translocate to mitochondria, leading into apoptosis or necrosis. Neurodegenerative diseases including Parkinson’s disease, Huntington’s disease and Alzheimer’s disease are still lack of clear explanations of mechanisms, but more studies have revealed the functional relationship between mitochondria and p53 towards the pathological development of these diseases. In this review, we discuss that p53 plays the vital role in the function of mitochondria in the aspect of pathological change metabolism. We also analyze these diseases with novel targeted treating molecules which are related to p53 and mitochondria, hoping to present novel therapies in future clinic.
In recent years, graphene (G) and graphene oxide (GO) nanoparticles have begun to be applied in surgical implant surface modification. However, biosafety and antibacterial ability of G and GO are still unclear. In this study, the biosafety of G and GO in vitro was evaluated by co-culture with bone marrow mesenchymal stem cells (BMSCs) and biosafety in vivo was observed by implanting materials into mice muscle tissue. Biosafety results showed that 10 μg/ml was the safety critical concentration for G and GO. When the concentration was more than 10 μg/ml, the cytotoxicity of G and GO showed a dose-dependent manner.Antibacterial results showed that G presented the antibacterial ability with the concentration equal to and more than 100 μg/ml; GO presented the antibacterial ability with the concentration equal to and more than 50 μg/ml. The antibacterial effect of G and GO were in a dose-dependent manner in vitro.The GO or G concentration between 50 and 100 μg/ml may be the better range to keep the balance of cytotoxicity and antibacterial ability. Our study reveals that G and GO have potential to be used in clinic with good biosafety and antibacterial properties in a certain concentration range.
Pain, especially chronic pain, has always been a heated point in both basic and clinical researches since it puts heavy burdens on both individuals and the whole society. A better understanding of the role of biological molecules and various ionic channels involved in pain can shed light on the mechanism under pain and advocate the development of pain management. Using viral vectors to transfer specific genes at targeted sites is a promising method for both research and clinical applications. Lentiviral vectors and adeno-associated virus (AAV) vectors which allow stable and long-term expression of transgene in non-dividing cells are widely applied in pain research. In this review, we thoroughly outline the structure, category, advantages and disadvantages and the delivery methods of lentiviral and AAV vectors. The methods through which lentiviral and AAV vectors are delivered to targeted sites are closely related with the sites, level and period of transgene expression. Focus is placed on the various delivery methods applied to deliver vectors to spinal cord and dorsal root ganglion both of which play important roles in primary nociception. Our goal is to provide insight into the features of these two viral vectors and which administration approach can be chosen for different pain researches. Anat Rec,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.