Reconstructing interactions from observational data is a critical need for investigating natural biological networks, wherein network dimensionality is usually high. However, these pose a challenge to existing methods that can quantify only small interaction networks. Here, we proposed a novel approach to reconstruct high‐dimensional interaction Jacobian networks using empirical time series without specific model assumptions. This method, named “multiview distance regularised S‐map,” generalised the state space reconstruction to accommodate high dimensionality and overcome difficulties in quantifying massive interactions with limited data. When evaluating this method using time series generated from theoretical models involving hundreds of interacting species, estimated strengths of interaction Jacobians were in good agreement with theoretical expectations. Applying this method to a natural bacterial community helped identify important species from the interaction network and revealed mechanisms governing the dynamical stability of a bacterial community. The proposed method overcame the challenge of high dimensionality in large natural dynamical systems.
Critical transition can occur in many real-world systems. The ability to forecast the occurrence of transition is of major interest in a range of contexts. Various early warning signals (EWSs) have been developed to anticipate the coming critical transition or distinguish types of transition. However, no effective method allows to establish practical threshold indicating the condition when the critical transition is most likely to occur. Here, we introduce a powerful EWS, named dynamical eigenvalue (DEV), that is rooted in bifurcation theory of dynamical systems to estimate the dominant eigenvalue of the system. Theoretically, the absolute value of DEV approaches 1 when the system approaches bifurcation, while its position in the complex plane indicates the type of transition. We demonstrate the efficacy of the DEV approach in model systems with known bifurcation types and also test the DEV approach on various critical transitions in real-world systems.
Understanding how ecosystems will respond to climate changes requires unravelling the network of functional responses and feedbacks among biodiversity, physicochemical environments, and productivity. These ecosystem components not only change over time but also interact with each other. Therefore, investigation of indi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.