Waterborne polyurethanes (PU) with different compositions of biodegradable oligodiols as the soft segment were synthesized as nanoparticles (NPs) in this study. Using dynamic light scattering (DLS), multiangle light scattering (MALS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), we demonstrated that these NPs were compact spheres with different shape factors. The temperature-dependent swelling of the PU NPs in water was distinct. In particular, PU NPs with 80 mol % polycaprolactone (PCL) diol and 20 mol % poly(L-lactide) (PLLA) diol as the soft segment had significant swelling (∼450%) at 37 °C. This was accompanied by a sol-gel transition observed in about 2 min for the NP dispersion. The thermally induced swelling and self-assembly of these NPs were associated with the secondary force (mainly hydrogen bonding) and degree of crystallinity, which depended on the soft segment compositions. The thermo-responsiveness of the PU NPs with mixed biodegradable oligodiols may be employed to design smart biodegradable carriers for delivery of cells or drugs near body temperature.
Thin film transistors (TFTs) of indium oxide (In2O3) and tin oxide (SnO2) were fabricated on SiO2 gate dielectric using reactive evaporation process. Structural investigation of the films revealed that In2O3 films were polycrystalline in nature with preferred (222) orientation and SnO2 films exhibited amorphous nature. The x-ray photoelectric spectroscopy measurements suggest that SnO2 films were oxygen rich and presume mixed oxidation states of Sn, namely Sn2+ and Sn4+. While the In2O3 based TFTs possess n-type channel conduction, SnO2 based TFTs exhibited anomalous p-type conductivity. Integration of these n- and p-type devices resulted in complementary inverter with a gain of 11.
In this article, we report the fabrication of SnO 2 thin film transistors ͑TFTs͒ fabricated by reactive evaporation. Different from the previous reports, the fabricated TFTs exhibit p-type conductivity in its undoped form. The postdeposition annealing temperature was tuned to achieve p-channel SnO 2 TFTs. The on/off ratio and the field-effect mobility were ϳ10 3 and 0.011 cm 2 / V s, respectively. To demonstrate inverter circuit, two devices with different threshold voltages were combined and an output gain of 2.8 was achieved. The realization of p-channel oxide TFTs would open up new challenges in the area of transparent electronics.
Bottom gate and top contact thin film transistors were fabricated using In 2 O 3 thin films as active channel layers. Thin films of varying thicknesses in the range 5-20 nm were deposited on an SiO 2 gate dielectric by the thermal evaporation process in the presence of high purity oxygen. The results of atomic force microscopy show that all the films exhibit dense grain distribution with a root-mean-square roughness in the range 0.6-8.0 nm. Irrespective of the thickness of the channel layer, the on/off ratio of the device is 10 4 . The channel mobility and resistivity were found to be a strong function of the thickness of the active layer. The Levinson model was used to calculate the trap density and the grain boundary mobility. The low processing temperature shows the possibility of utilizing these devices on flexible substrates such as polymer substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.