The progression of distant metastasis cascade is a multistep and complicated process, frequently leading to a poor prognosis in cancer patients. Recently, growing evidence has indicated that deregulation of microRNAs (miRNAs) contributes to tumorigenesis and tumor progression in colorectal cancer (CRC). In the present study, by comparing the miRNA expression profiles of CRC tissues and corresponding hepatic metastasis tissues, we established the downregulation of miR-199b in CRC metastasis tissues. The decrease in miR-199b expression was significantly correlated to late TNM stage and distant metastasis. Moreover, Kaplan–Meier curves showed that CRC patients with high expression level of miR-199b had a longer median survival. Functional assays results indicated that the restoration of miR-199b considerably reduced cell invasion and migration in vitro and in vivo, and increased the sensitivity to 5-FU and oxaliplatin. Further dual-luciferase reporter gene assays revealed that SIRT1 was the direct target of miR-199b in CRC. The expression of miR-199b was inversely correlated with SIRT1 in CRC specimens. SIRT1 knockdown produced effects on biological behavior that were similar to those of miR-199b overexpression. Furthermore, through Human Tumor Metastasis PCR Array we discovered KISS1 was one of the downstream targets of SIRT1. Silencing of SIRT1 upregulated KISS1 expression by enhancing the acetylation of the transcription factor CREB. The latter was further activated via binding to the promoter of KISS1 to induce transcription. Thus, we concluded that miR-199b regulates SIRT1/CREB/KISS1 signaling pathway and might serve as a prognosis marker or a novel therapeutic target for patients with CRC.
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in oncogenesis and tumor progression. However, our knowledge of lncRNAs in thyroid cancer is still limited. To explore the crucial lncRNAs involved in oncogenesis of papillary thyroid cancer (PTC), we acquired data of differentially expressed lncRNAs between PTC tissues and paired adjacent noncancerous thyroid tissues through lncRNA microarray. In the microarray data, we observed that a newly identified lncRNA, HIT000218960, was significantly upregulated in PTC tissues and associated with a well-known oncogene, high mobility group AT-hook 2 (HMGA2) gene. Both in normal thyroid tissues and PTC tissues, the expression of HIT000218960 was significantly positively correlated with that of HMGA2 mRNA. Knockdown of HIT000218960 in PTC cells resulted in downregulation of HMGA2. In addition, functional assays indicated that inhibition of HIT000218960 in PTC cells suppressed cell proliferation, colony formation, migration and invasion in vitro. Increased HIT000218960 expression in PTC tissues was obviously correlated with lymph node metastasis and multifocality, as well as TNM stage. Those findings suggest that HIT000218960 might acts as a tumor promoter through regulating the expression of HMGA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.